Nibiru – Faux soleil et dispositif de dissimulation dans l’espace plus d’explication avec démonstration 19/08/2016 – Jeff P – _ 19_08_2016. Russian Beacon satellite set to light up the night sky: ‘Artificial star’ would reflect sunlight to illuminate parts of Earth. _ 19_08_2016.

19-08-2016

 

Nibiru

Nibiru – Faux soleil et dispositif de dissimulation dans l’espace plus d’explication avec démonstration 19/08/2016 – Jeff P – _ 19_08_2016.

Russian Beacon satellite set to light up the night sky: ‘Artificial star’ would reflect sunlight to illuminate parts of Earth

Lentilles Convergences et Diffractions

 

*

Jeff P – 

NIBIRU WATCHER     

Faux soleil et dispositif de dissimulation dans l’espace encore explianed avec démonstration 19/08/2016 

Fake sun and cloaking device in space further explianed with demonstration 8/19/2016

Jeff P 

*

Minimum sur les Lentilles

Convergences et Diffractions

how+lens+work

Ce que sont des lentilles?

Une lentille est une pièce transparente en verre ou en matière plastique avec au moins une surface courbe. Il tire son nom du mot latin pour « lentilles » (un type d’impulsion utilisé dans la cuisine), mais ne vous laissez pas confondre. Il n’y a aucune raison pour cette autre que le type le plus commun de la lentille (appelée une lentille convexe) ressemble beaucoup à une lentille!

Photo: Lentils ont donné leur nom lentilles. lentilles convexes renflement au milieu comme les lentilles, tandis que les lentilles concaves « grotte » au milieu et bomber sur les bords.

Comment les lentilles fonctionnent-ils?

Une lentille fonctionne par réfraction : il dévie les rayons lumineux qui passent à travers elle de sorte qu’ils changent de direction. (Vous pouvez lire une explication complète des raisons pour lesquelles cela se produit dans notre article sur la lumière .) Cela signifie que les rayons semblent provenir d’un point qui est plus proche ou plus loin d’où ils proviennent effectivement et c’est ce qui rend les objets vus à travers une lentille semblent soit plus grand ou plus petit que ce qu’ils sont vraiment.

Les types de lentilles

Il existe deux principaux types de lentilles, connu sous le nom convexe (ou convergente) et concave (ou divergente).

lentilles convexes

Dans une lentille convexe (parfois appelé une lentille positive), le verre (ou en plastique) surfaces renflement vers l’ extérieur dans le centre donnant la forme de lentilles de type classique. Une lentille convexe est aussi appelée une lentille convergente , car elle rend les rayons lumineux parallèles passant à travers elle courbée vers l’ intérieur et rencontrez (convergent) à un endroit juste au – delà del’objectif connu comme le point focal .

lentille Convex: diagramme de rayons montrant comment une lentille convexe rend les rayons lumineux convergent vers un foyer 

Photo: Une lentille convexe rend les rayons lumineux convergent (se réunir) au point ou mise au point focal. La distance du centre de la lentille vers le point focal est la distance focale de la lentille.

Lentilles convexes sont utilisés dans des choses comme les télescopes et jumelles pour amener les rayons lumineux éloignés vers un foyer à vos yeux.

lentilles concaves

Une lentille concave est exactement le contraire avec les surfaces extérieures se courbant vers l’ intérieur, il est donc parallèle courbe des rayons lumineux vers l’ extérieur ou à diverger. Voilà pourquoi les lentilles concaves sont parfois appelées lentilles divergentes. (Un moyen facile de se rappeler la différence entre concaves et convexes est de penser à con troglodytes lentilles spéléovers l’ intérieur.)

lentille Concave: diagramme de rayons montrant comment une lentille concave rend les rayons lumineux divergent d'un foyer 

Photo: Une lentille concave rend les rayons lumineux divergent (étalé).

Lentilles concaves sont utilisés dans des choses comme des projecteurs de télévision pour faire des rayons lumineux répartis dans la distance. Dans une lampe de poche, il est plus facile de faire ce travail avec un miroir , qui pèse généralement beaucoup moins une lentille et est moins cher à fabriquer aussi bien.

What are lenses?

A lens is a transparent piece of glass or plastic with at least one curved surface. It gets its name from the Latin word for « lentil » (a type of pulse used in cooking), but don’t let that confuse you. There’s no real reason for this other than that the most common kind of lens (called a convex lens) looks very much like a lentil!

Photo: Lentils gave lenses their name. Convex lenses bulge out in the middle like lentils, while concave lenses « cave in » in the middle and bulge out at the edges.

How do lenses work?

A lens works by refraction: it bends light rays as they pass through it so they change direction. (You can read a full explanation of why this happens in our article on light.) That means the rays seem to come from a point that’s closer or further away from where they actually originate—and that’s what makes objects seen through a lens seem either bigger or smaller than they really are.

Types of lenses

There are two main types of lenses, known as convex (or converging) and concave (or diverging).

Convex lenses

In a convex lens (sometimes called a positive lens), the glass (or plastic) surfaces bulge outwards in the center giving the classic lentil-like shape. A convex lens is also called a converging lens because it makes parallel light rays passing through it bend inward and meet (converge) at a spot just beyond the lens known as the focal point.

Convex lens: ray diagram showing how a convex lens makes light rays converge to a focus 

Photo: A convex lens makes light rays converge (come together) at the focal point or focus. The distance from the center of the lens to the focal point is the focal length of the lens.

Convex lenses are used in things like telescopes and binoculars to bring distant light rays to a focus in your eyes.

Concave lenses

A concave lens is exactly the opposite with the outer surfaces curving inward, so it makes parallel light rays curve outward or diverge. That’s why concave lenses are sometimes called diverging lenses. (One easy way to remember the difference between concave and convex lenses is to think of concave lenses caving inwards.)

Concave lens: ray diagram showing how a concave lens makes light rays diverge from a focus 

Photo: A concave lens makes light rays diverge (spread out).

Concave lenses are used in things like TV projectors to make light rays spread out into the distance. In a flashlight, it’s easier to do this job with a mirror, which usually weighs much less than a lens and is cheaper to manufacture as well.

http://www.explainthatstuff.com/lenses.html

*

Lentilles de Fresnel

Gros plan d'une lentille de Fresnel.

Photo: Si vous voyez une lumière qui brille à travers un morceau de verre ou de plastique avec ce modèle bizarre de cercles concentriques sur sa surface, vous pouvez être sûr que vous regardez une lentille de Fresnel.

lentille de Fresnel Lighthouse Gros plan d'une lampe de phare factice montrant la lentille et des prismes Fresnel.

Photos: La lentille de Fresnel exposition au Think Tank , le musée des sciences à Birmingham, en Angleterre. La chose argentée au fond est la table tournante électrique qui rend l’ensemble de la lampe et l’ assemblage de lentilles tournent très lentement.

http://www.explainthatstuff.com/fresnel-lenses.html

*

ARTIFICIAL SUNLIGHT

AUTRE EXEMPLE « D’ETOILE ARTIFICIELLE » OU « SOLEIL ARTIFICIEL » DANS L’ESPACE — SATELLITE QUE VOUS POUVEZ VOIR BRILLER    —

Satellite Beacon Russe mis à éclairer le ciel nocturne: «étoile artificielle» reflète la lumière du soleil pour éclairer les parties de la Terre

  • cible crowdfunding pour la prochaine phase de test a été atteint 
  • Raised près de 1,8 millions de roubles (24.235 17.365 £ / $) de 2,322 sponsors
  • Il sera lancé à partir d’un Soyouz 2 fusée avec l’aide de Roscosmos 
  • Fait d’un film mince de polymère réfléchissant 20 fois plus mince qu’un cheveu humain
  • Voir plus de nouvelles de la Russie à www.dailymail.co.uk/russia 

Russian Beacon satellite set to light up the night sky: ‘Artificial star’ would reflect sunlight to illuminate parts of Earth

  • Crowdfunding target for next stage of testing has now been reached 
  • Raised almost 1.8 million rubles (£17,365/$24,235) from 2,322 sponsors
  • It will be launched from a Soyuz 2 rocket with help from Roscosmos 
  • Made of a reflective thin polymer film 20 times thinner than human hair
  • See more news from Russia at www.dailymail.co.uk/russia 

The brightest star in the night sky is Sirius, known as the ‘dog star’ or Alpha Canis Majoris.

But that could be about to change if a crowdfunded project in Russia takes off as planned later this year.

Called the ‘Mayak’ or ‘Beacon’ project, engineers are hoping to launch a satellite that will become the brightest object in our skies, apart from the sun, thanks to a giant reflective sheet of material.Engineers on the the 'Mayak' or 'Beacon' project are hoping to launch a satellite (illustrated) that will become the brightest object in our skies, apart from the sun, thanks to a giant reflective sheet of material

Engineers on the the ‘Mayak’ or ‘Beacon’ project are hoping to launch a satellite (illustrated) that will become the brightest object in our skies, apart from the sun, thanks to a giant reflective sheet of material

The launch is scheduled for the summer and is expected to be taken up in a Soyuz 2 rocket, with help from Roscosmos, the Russian space agency.

The team is planning to place the spacecraft in a sun-synchronous orbit 370 miles (600km) above the ground.

Read more: http://www.dailymail.co.uk/sciencetech/article-3470871/Russian-Beacon-satellite-set-light-night-sky-Artificial-star-reflect-sunlight-illuminate-parts-Earth.html#ixzz4HoG9xZSx 
Follow us: @MailOnline on Twitter | DailyMail on Facebook

*

ARTIFICIAL SUNLIGHT

AUTRE SOURCE DE LUMIERE ARTIFICIELLE

LES EFFETS QUI EN DECOULENT — LED Light — — —

Autre exemple

autre application de Lumière Artificielle

Controllable Spectrum Artificial Sunlight Source System using LEDs

Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Studies, The University of Tokyo
Professor: Kazuhiro Fujiwara
URL: http://www.kankyo.en.a.u-tokyo.ac.jp/member/fujiwara/index.html


Light-emitting diodes (LEDs), as used in fairy lights and traffic lights, are an integral part of our daily lives. At the same time, they are vital tools in research that looks at the impact of light on living organisms, known as photobiology. Today, new and unique LED light emitting systems are being developed to be used in photobiological research. 

Current LED Use in Photobiological Research
By selecting a certain type of LED, it is possible to prepare various variations of monochromatic light. The monochromatic light or composite light (created by combining several monochromatic lights) prepared is then used to irradiate the living organism, plant body, organ, or cell which is the subject of the research, for a certain term (number of hours) at a set strength and a set spectral distribution, and observations are taken on the response of the research subject. This type of research project is being carried out all over the world today. But what if there was a light source that allowed the researcher to control the spectral distribution of the irradiating light freely and dynamically? Such a system would make enable the examination of diverse light environments, the investigation of which has previously been impossible. This in turn would doubtless generate much significant scientific knowledge and discovery. 

Creating Artificial Sunlight for Research Manipulation
This research is focused on the development of a lighting system with a spectral distribution approximate to that of ground level sunlight. It aims to produce this not just as a reference light, but also to arbitrarily modify this using a range of wavelengths in to produce light with diverse spectral distributions. Importantly, the system allows the continuous irradiation of those lights, in any order and with total flexibility. The official name of the system is the ‘Controllable Spectrum Artificial Sunlight Source System using LEDs’. Artificial sunlight is an appropriate choice for the reference light because of the significance of natural sunlight for organisms living above ground. In order to produce light with multiple different spectral distributions, the system’s light source uses 32 different LEDs, each with a different peak wavelength. Spectral distribution is then controlled by adjusting the voltage applied (the supply current) to the LEDs with differing peak wavelengths. 

The system is now in its second generation. The surface area of the light outlet is 7 cm2, and the spectral irradiation (light intensity) produced reaches up to one fifth of that of ground level sunlight on a clear day at solar noon in the middle of summer (111 W m-2 to wavelength range of 380–940 nm). The third generation system is near to completion: the surface area of its light outlet will be ten times that of the second generation model, enabling spectral irradiation (SI) that is 2.5 times stronger than the current maximum intensity. 

photo1 
Photograph 1.
Set-up of Artificial Sunlight Source System using LEDs. The temperature around the light source unit must be maintained at 15°C and is therefore installed within the growth chamber. The spectrometer is only fitted when measuring spectral irradiance (SI) from the light radiance port. 

photo2 
Photograph 2.
Appearance of LED module when electric voltage has been applied to produce spectral irradiance (estimated best approximated SI) estimated as the best approximation of one sixth of the spectral irradiance of ground level sunlight at 13:00 on a clear day (May 12, 2007) in Bunkyo-ku, Tokyo, Japan. 
LEDs with a peak wavelength of more than 810 nm appear not to be illuminated in the picture. 

photo3
Photograph 3.
Appearance of light source irradiation when electric voltage has been applied to produce spectral irradiance (estimated best approximated SI) estimated as the best approximation of one sixth of the spectral irradiance of ground level sunlight at 13:00 on a clear day (May 12 2007) in Bunkyo-ku, Tokyo, Japan. 
fig.1 
Figure 1. 
Spectral irradiance and light outlet when electric voltage has been applied to produce the estimated best approximate SI, and the spectral irradiance (estimated best approximate SI) estimated as most similar to target SI for the spectral irradiance of one sixth of that of ground level sunlight (target SI, 1/6th of sunlight SI) at 09:00, 11:00, 13:00, and 15:00 on a clear day (May 12, 2007) in Bunkyo-ku, Tokyo, Japan, and the light source irradiance of the same.
Spectral irradiance here was continually applied at 2-second intervals. Results indicate that this artificial sunlight source system can dynamically control the spectral distribution of the irradiating light. 


References:
Fujiwara, K. and A. Yano (2011) Controllable spectrum artificial sunlight source system using LEDs with 32 different peak wavelengths of 385–910 nm. Bioelectromagnetics 32(3): 243-252.
Fujiwara, K., T. Sawada, S. Goda, Y. Ando and A. Yano (2007) An LED-artificial sunlight source system available for light effects research in flower science. Acta Horticulturae 755: 373-380.
Fujiwara, K. and T. Sawada (2006) Design and development of an LED-artificial sunlight source system prototype capable of controlling relative spectral power distribution. Journal of Light & Visual Environment 30(3): 170-176.

http://japanest-nippon.com/en/ap/ap_journal_page.php?id=10

*

Cliquez sur:

Nibiru

pour accéder à tous les Liens

*

*