Nibiru Planètes X – Comment cacher les Corps Planétaires à l’aide d’un Voile Solaire ou un Simulateur Solaire – Chris Potter – _ 22_08_2016. Le Miroir Primaire – NASA – Exemple Application au Télescope Spatial – 22_08_2016.




Nibiru Planètes X – Comment cacher les Corps Planétaires à l’aide d’un Voile Solaire ou un Simulateur Solaire – Chris Potter – _ 22_08_2016.

Le Miroir Primaire – NASA – Exemple Application au Télescope Spatial – 22_08_2016.

Simulateur Solaire Basé sur un Laser Supercontinuum pour Dispositif de Cellules Solaires et Caractérisation des Matériaux (a) Répartition de la lumière projetée émise par un simulateur sortie de fibre.



Chris Potter  —

les pensées d’un physicien réel sur la façon de cacher les corps planétaires en utilisant une voile solaire ou SIMULATEUR SOLAIRE 


Chris Potter 

Artificial sunlight 

Figure 1 below shows an array of hexagonal reflectors used in construction of sun simulator. This is a small scale sun simulator. I think NASA built and assembled a large scale one in space and is using it to hide planets and stars in the solar system.

Afficher l'image d'origine

Figure 1. Hexagonal array of reflectors in a flat disk arrangement used in the construction of sun simulators 

Different possible shield designs to hide objects close to the Sun and in the Solar system

Lens in orbit



Chris Potter  —

les pensées d’un physicien réel sur la façon de cacher les corps planétaires en utilisant une voile solaire ou SIMULATEUR SOLAIRE 



Anglais (Sous-titres automatiques)
0:00good morning it’s chris potter i hope you’re having a great day it is august
0:05$MONTH twenty-second 2016 I’m gonna cover a few more points of information
0:13regarding the potential technology behind hiding planetary objects in space
0:21for my physicist friend i have worked out a few more details on the Sun
0:26simulator and i have written a document on different shield designs the best
0:33turns out to be a solar sail jetp oh I can now account for the bright beams of
0:41light and circular ring around the Sun simulation devices seen from the ISS it
0:48turns that it turns out
0:50excuse me that it is a lot like a lighthouse
0:54this is getting interesting folks to say the least
1:01so let’s go ahead and proceed shall we were just going to read right through
1:05the document and that’s just how we’re going to work it today
1:08ok there’s two documents and like i said i believe it’s probably the best way for
1:13us just to cover the material just to read it straight out and here we go
1:17artificial sunlight figure 1 below shows an array of hexagonal reflectors used in
1:23the construction of Sun simulators this is a small-scale son simulator remember
1:29we also have big agent package blog and steve olson that have mentioned similar
1:34technologies as well as Jeff p
1:38I think NASA built and assembled a large scale one in space and is using it to
1:43hide planets and stars in the solar system
1:46oh that’s right we’re on to it we know here it comes baby hexagonal array of
1:55reflectors in a flat disk arrangement used in the construction of Sun
1:59simulators gosh hexagonal action figure 2 shows the light source of a simulator
2:09on the top left we have a lamp
2:12in front of a reflector on the top right we see that the side view of the lamp
2:17and reflect or there is usually also a cooling system behind the reflector as
2:26the lamps generate a lot of heat have to to this friggin the lamps used or
2:32something like mercury xenon high-pressure art lamps
2:37whoa several kinds of arc lamps are used so as to provide the full spectrum of
2:43frequencies associated with sunlight
2:58not all lamps are switched on at the same time they are selectively switched
3:02on to provide the correct intensity and spectral distribution so as to simulate
3:07sunlight as far as possible
3:10wow the pulsing effect may be due to this selective switching system
3:16switching different lamps on and off it irregular intervals lampe ok cooling
3:25system other lampe concave reflector light rays from lampe are projected
3:31forward mr. Lampe oh you’re looking a little bit familiar aren’t you haha the
3:39Sun simulator light source arrangement is made of highly of a high
3:44excuse me is made up mainly of a higher power lamp and a concave reflector
3:48behind it so let’s let’s deeply absorb that . okay just okay now let’s continue
3:57the bottom diagram in figure 2 shows how light rays coming off the lamps are all
4:02the upcoming off the lamp are all directed forward as the reflector
4:07reflects all the rays that are incident on along a horizontal direction this is
4:14getting crazy you guys figure 3 shows the reflector rate mounted on a flat
4:20disk in a convex mirror mounted above the center of the flat disk this is the
4:25back part of the Sun simulation device flat disk lamp and reflector mounted on
4:31a flat disk concave mirror in front of the disk ok cool
4:35ok interesting light 3r book figure 3 light source array at the back of the
4:42Sun simulator device is made up of hexagonal shape concave reflectors
4:47mounted on a flat disk a concave mirror is mounted above the center of the flat
4:51disk i appreciate the figures and for us to kind of restate andrey cushion the
4:59information because i think it’s a good learning and teaching technique
5:04figure 4 we will proceed to shows the whole Sun simulation device from the
5:11yeah at the back we have the flat disk with lamps and reflectors mounted on it
5:17in front of the flat disk and lamps we have a concave mirror and in front of
5:21that we have one large concave mirror followed by one large convex mirror
5:26these large mirrors have holes through their centers so that the light can pass
5:32through at the front of the device there is a small come convex reflective
5:38how did these guys figure this out the orange arrows represent ah light rays
5:45coming off the lamps and reflectors mounted on the flat disk at the back the
5:49blue and green rays illustrated what happens to light coming from the back of
5:54the disk the blu-ray demonstrates what happens to light departing from
5:59somewhere between the center and the edge of the back
6:03excuse me let’s do that again the blu-ray demonstrates what happens to
6:09light departing from somewhere between the center and the edge of the back disc
6:15the green arrow illustrates what happens to array departing from the outer edge
6:21of the flat disk now convex mirrors reflective surface curves outwards in
6:28the center
6:29it’s a perfect explanation causes incident rays to diverge and concave
6:35mirrors riff ok let’s do this again now convex mirrors reflective surface curves
6:42outwards in the center cause incident rays to diverge and concave mirrors
6:47reflective surface curved inwards in the center cause incident rays to converge
6:52gotcha so following the greenery we see that it first hits the large concave
7:00mirror which results and the Ray converging after reflection towards the
7:07back flat disk hitting the back small concave mirror you are awesome
7:12the ray is reflected again at this mirror in
7:15convergys a bit more moving through the hole between the large concave and
7:20convex mirrors and it is then reflected off the small complex convex reflecting
7:28surface at the front of the device the Ray than diverges towards the large
7:34convex mirror and diverges away from the large convex mirror
7:39finally it goes through the Fresnel lenses which been there raised so that
7:45they exit the device in a parallel configuration let’s look at that dude
7:51whoa ok light rays coming from lamp and reflector flat desk with lamp and
8:04reflector array
8:07ok that’s cool and we got the green kind of does the same right
8:18Fresnel lenses
8:26large convex mirror large concave mirror small convex reflective surface small
8:35complex convex reflective surface ok small concave mirror large concave look
8:41I’m just being completely elementary with this please forgive me for just
8:48being that that that because I think that’s the way we need to present this
8:52material son similar setup
8:54excuse me figure for sun simulator device viewed from the side
8:59ok it again restating cushion it is made up of a light source back disc a large
9:05concave mirror a large convex mirror a small concave mirror a small convex
9:11reflective surface a lighthouse type fresnel lens at the front of the device
9:16the blue and green rays illustrate the path followed by light originating at
9:21different points of the back disc this is great you rock the nation out
9:29figure-four did i just read that you ever read that again okay sorry i just
9:37read that I apologize okay
9:39the outline of the light leaving the Sun simulator through the Fresnel lenses is
9:43shown in figure 5 on the right on the left
9:48figure 5 shows that after the diverging from the surface of the large convex
9:52mirror light rays go through the Fresnel lenses and exit parallel to each other
9:57just like a son does do ya figure 5 direction of light rays going through
10:07the front friends all ends after reflection from the front convex mirror
10:12and overall outline of the Sun simulator as viewed from in front of it
10:18this is crazy that since the large mirrors are circular
10:25we may expect the outline of the Sun simulated be circular
10:30excuse me we cannot forget that the light sources are hexagonal in shape and
10:36that results in the outline of the whole array of reflectors to be hexagonal in
10:42shape as well this is illustrated by figure 1 although an actual son
10:47simulator devices orbit would be a great deal larger remember all those
10:54top-secret titan space launches for years that stopped I don’t know how long
11:04ago but tighten the Titan missions they just kept going up with all kinds of
11:10stuff crammed in there
11:14rockets and they’re all classified missions
11:18what were they taken up there look into the Titan launches there’s not much
11:24information you’re going to find but that would be a great way to build
11:28infrastructure in space really simple
11:31wow you people must think we’re idiots
11:37whatever let’s try this again okay I apologize little bit of comment there
11:43we’ll go back here
11:44this means that the razor it originated from an area on the back disc with the
11:49hexagonal outline and the final raise diverging from the convex mirror will
11:54retain this outline that totally makes sense it is therefore possible to see
11:58why lens flares reveal hexagonal shapes and circles with dots in the middle
12:03these are the images of the light sources circular lamps and hexagonal
12:07reflectors of the back of that’s the device there’s still a problem of
12:13mounting the mirrors without distributing the light the best solution
12:17is probably to confine the whole . device and a huge cylindrical cylinder
12:22or container
12:23excuse me there will be brackets for the small reflective surface in the front it
12:29would get in the way and cause and cast a bit of a shadow
12:34the front circular reflective surface would also cause a shadow possibly
12:39leading to a black circle viewed in the center of the simulated Sun if the
12:44viewer is directly in line with it the nature of truth isn’t it so overwhelming
12:55inconvenient just kind of cuts and divides asunder
13:00yeah lastly in order to make the device as bright as possible it is a good idea
13:05to place a converging lens in the front of the mirror assembly this lens should
13:10then bend the diverging light rays reflected from the front convex mirror
13:15forward so that they exit the Sun simulator parallel to each other
13:19ok the large circular shield effect we see an images of the Sun from the ISS
13:25and the beams of light running through the center of the simulated Sun seems to
13:29be due to the lighthouse effect friends lenses mounted at the front of the
13:33device to see that this is the case notice how closely the simulated Sun as
13:39seen in our skies I knew it shown in figure 6 with it’s too bright beams of
13:46light running across that I always wondered what that thing was
13:50and we can see why you like light clothes through the air it’s like whoa
13:58man whoa resembles the flash of light from a lighthouse
14:03let’s read that again to see that this is the case notice how closely the
14:08simulated Sun as seen in our skies shown in figure 6 with it’s too bright beams
14:13of light running across it resembles the flash of light from a lighthouse shown
14:17in Figure so now this is just figure 6 we’re gonna go blow son simulator and
14:24this guy exhibited the exact expected hexagonal shape and also the familiar
14:30light beams emanated from the center let me read that again my apologies son
14:35simulator in the sky exhibiting the expected hexagonal shape and also the
14:40familiar Light Beings emanating from the center
14:42wow this is ridiculous
14:47the light flash from the lighthouse has a bright vertical beam of light running
14:52across the center and two other diagonal beams that are not nearly as bright this
14:57light flash flash is produced with the lens shown on the right in figure 7 the
15:03bright vertical beam is produced when a light ray is incident on the space
15:08between the central circular lens and the first semicircular prism above the
15:13center central excuse me circular lens where ray is incident at this point it
15:20is not bent but continues in a straight line this is illustrated in figure 8
15:25when a spherical frenzel lens as the one shown on the right of figure 9 is used
15:31at least two bright beams of lighter produced the two brightest beams are
15:36usually at 90 degrees to each other
15:45white flash from a lighthouse with the rotating friends lenses friends lens
15:50used by this lighthouse is shown on the right
15:53whoa it looks so crazy cool okay
16:00figure 8 when light rays incident at the point shown it is not been that goes
16:05through and a straight line creating your vertical beam of light
16:12haha wow if this isn’t the best explanation as to what we’re seeing
16:20I don’t know what is sin simulator figure 9 from the ISS is several beams
16:26of light running across the center the vertical being being the brightest and
16:30the circular ring around it
16:32I agree Wow figure 9 shows that the Sun simulators viewed from the ISS notice
16:41that it has one main bright vertical beam of light running across its center
16:45another beam not quite as bright running horizontally and a few diagonal light
16:52beams notice also that the Sun simulator is surrounded by a circular ring figure
16:589 shows that the flash of light from a lighthouse using a spherical frenzel
17:02lens of the type shown on the right
17:04notice that the flash of light has a ring around it similar to the Sun
17:08simulator picture from the ISS beams of light emanating from the center also
17:12visible but are not but are not as long as the main beam and figure 7 probably
17:21because it was not very dark when the picture of the flash was taken figure 9
17:26flash of light on the left from lighthouse using the spherical friends
17:30lenses is shown on the right all right part 2 or resume momentarily
17:36thank you I folks chris potter part two different possible shield designs to
17:42hide objects close to the Sun and in the solar system lens in orbit
17:47this is the simplest possible design for a shield and it has the advantage of
17:52producing sunny lose it is just the lens and only refracts sunlight at the edges
17:59this with this will make an object close to the surface of the sun out-of-focus
18:03twills rays coming from the central part of the Sun go through undisturbed figure
18:091 illustrates the effect the simple lens shield would have on sunlight if sets a
18:14shield this place between the Sun and a viewer on the surface of the earth that
18:19viewer sees the image shown on the right Central Sun with the halo around it
18:34Wow figure 1 shield made from a lens with the flat surface and convex edges
18:39the lens has to be at least the same apparent size is the Sun and whatever
18:46orbital altitude it is placed that that was like the perfect explanation for
18:53what I’ve been trying to say for a long time to calculate how large this lens
18:58would need to be we need to calculate the angular width of the Sun the Sun
19:03earthdance distance is a hundred and 49 million six hundred thousand kilometers
19:10and the radius of the Sun is 696 thousand kilometers who was big
19:15the sun’s angular with representative by figured d is well not figured d but
19:23placeholder d will just say d Chris come on
19:28you forgot your math is equal to the diameter twice the radius r / the
19:34sun-earth distance capital R ok let’s do that again
19:38the sun’s angular with capital d is equal to the diameter twice the radius
19:43lowercase R divided by the sun-earth distance uppercase R ok this would be
19:52the formula and we’re getting high-tech now this is awesome
19:58so the sun’s apparent diameter at an altitude comparable to that of the ISS
20:03IE at about a equals 5 400 excuse me kilometers
20:13ok i’m kind of thinking here for a second d equals to R over R equals nine
20:19point three times ten to the negative third rad parentheses 180 degrees pirate
20:26equals . 53 degrees so the sense apparent diameter has an altitude
20:31comparable with that of the ISS IE at about a equals four hundred kilometers
20:35is d equals cattle da equals nine point three times ten to the negative third
20:40rad for by 10 to the fifth M equals 3.72 times ten to the third M equals 3.72
20:50kilometers times . 62 miles over one kilometer equals 2.3 miles
20:56whoa that is huge so it may be better to place it in a lower orbit
21:04Wow with a hundred-kilometer orbit the lens would only have to be . six miles
21:13or . 9 3 kilometers in diameter
21:15that’s still a huge Wow at an orbit altitude of 40 kilometers the one
21:20required lens diameter would only be 320 372 m or meters . 23 miles
21:36hi chris potter part3 it is possible to get chromatic aberration at the edges of
21:42this lens due to a separation of the different frequencies making up white
21:47this is illustrated by figure 2 parallel rays coming from the Sun lens and he
21:54goes boom figure 2 chromatic aberrations can lead to the separation of colors
21:59giving the impression of a complete rainbow around the Sun whoa dude
22:05Wow spherical lens the converging spherical lens is another possibility
22:15for shield as a spherical lens is subject to aberration which was which
22:20would result in a possible son halo effect due to a very large distance
22:25involved this lens would have to be about the same size as the first lens
22:29shield described if it is placed at the same orbital altitude but in addition
22:34the spherical lens focal length has to be matched with the orbital added
22:38altitude attitude but in addition the spherical lens focal length has to be
22:44met with the orbital altitude in order for the Sun viewed from the surface of
22:49this the earth to add the expected size this is perfect wonderful explanation
22:55I’ve been thinking all this but i can’t i could never liked explain it
23:01technically so this is this is excellent this type of shield is illustrated in
23:06figure 3 spherical aberration leads to two focal points most of the light going
23:11through the lens converges on the main focal point but the light going through
23:15the outer edges of the outer edges of the lens converges towards the second
23:20focal point
23:21this results in most of the light going through the lens getting a day fuse
23:25out-of-focus image of the Sun whoa in the center and the light going through
23:33the outer edge resulting in the halo any object close to the surface of the sun
23:38or in front of the Sun would be out of focus for a viewer on the ground would
23:41not be seen secondary focal point main focal point
23:47gotcha they you figure 3 the use of converging spiritual lens as a shield
23:53results in the Sun and halo image as a result of spherical aberration gotcha
23:58first person I’m thinking of is Lizzie hall when I see this picture this lens
24:08can be used to hide any object outside the Earth’s atmosphere not just an
24:12object close to the surface of the sun at the lens is placed between the object
24:17and a viewer on the Earth’s surface and the object would be out of focus in the
24:21viewer would see something like what is shown in figure 4 Lizzy has lots of
24:26pictures like this that she has submitted to me they’re identical
24:30out-of-focus objects as we would as would be seen at a point further than
24:35the focal point of a converging lens since the viewers still will be able to
24:42figure out that there is something out there even if the images out of focus
24:45this type of shield is not the best way of hiding objects from the surface of
24:49the Sun ok the Sun simulator or solar sail amazing described below would do a
24:58better job of hiding these objects i agree
25:01Jeff p baby blue if the lens is just the right size for all the light from the
25:06Sun to go through it at a certain orbital altitude moving the lens to a
25:11slightly lower orbit would remove the halo this would happen because sunlight
25:16is viewed by a viewer at a point on the surface of the earth correctly aligned
25:20with the Senate the lens would go through the central part of the lens and
25:24none would go through the outer edge
25:26however the resulting image of the Sun would be a similar because the focal
25:30point at the lens would be closer to the surface of the earth
25:33this is illustrated in figure 5 figure 5 moving the spherical lens shield to a
25:39slightly lower / orbit results and no light going through the edges of the
25:43lens which removes the halo from the image produced which would be a better
25:50alternative to be doing this
25:53covertly because of course you know we don’t want to do anything in the open we
25:57just want to do
25:57everything in secret in order to make the lens less bulky of friends lens
26:03which contains all the correct of curvatures but it has a fraction of the
26:07thickness can be used in place of the spherical lens and i can tell you that
26:10friends Allen’s thing that looks so cool and weird looking man now the lenses
26:15plays that the edge of earth’s atmosphere and a focal point is well
26:18within the atmosphere the air in the area surrounding the focal point would
26:22heat up which could lead to severe disruptions of weather patterns and
26:26severe storms
26:28wow dude daily in turn would you please listen to what I’m trying to share with
26:40solar sail another possibility is a solar sail as a shield this is the best
26:46option as a shield as it cannot only hide objects close to the surface of the
26:51sun but also objects anywhere in the sky the kind of solar sails shown in figure
26:566 has a small opening in the center so for a point on the surface of the earth
27:01right underneath the solar sail only rays of light originally at the center
27:05suddenly get through the opening the rest of the sunlight hitting the sale
27:09would not reach the surface of the earth figure 6 solar sail shield there are
27:18plenty of patents for that and that the hexagonal simulators well by the way so
27:25these concepts are not you know left-field some crazy people are coming
27:32up with this is actually real scientific engineering physicist action right this
27:39is like the real deal folks I can’t explain myself while but this individual
27:44can and i really want you to pay attention
27:47sorry to interrupt on that I apologize let’s get back to the material order to
27:51make this the image of the Sun viewed by an observer on the surface of the earth
27:55to be right size because absolutely want to keep the deception you don’t have
28:00anyone guessing you don’t want people like chris potter trying to figure out
28:04the lie right in order to make the image of the Sun viewed by an observer on the
28:09surface of Earth to be right size and my
28:11you good idea to mount a lens on the earth-facing side of the solar sail this
28:18arrangement is illustrated in figure 7 where cross-section through the middle
28:22of the solar sail is shown the solar sail is even an even better shield in
28:29the lens as would be able to hide objects a little further away from the
28:33surface of the sun as well as getting the impression the Sun is where it is
28:37supposed to be with his heel that is also possible to create a halo effect if
28:43the lens in the same size as the opening in the center of the sale as illustrated
28:47in figure 3 the reason i’m laughing is just about everything that this is a
28:51that is explained in this document is what we’ve all been seeing and taking
28:56pictures of rays from the Sun solar sail opening of center of solar sail lens
29:03image produce very simple thank-you cross-section of solar sail showing the
29:08central opening less mounted on the earth-facing side and the expected image
29:13of the Sun produced the use of a solar sails the shield would severely
29:18decreased the amount of sunlight reaching the surface underneath the sale
29:22the Sun would be perceived to be the same size but the intensity of the light
29:27would be severely decreased also the Sun would seem to originate in the
29:31atmosphere above the clouds rather than a point and outer space
29:41whoa that just like blew away some of the flat earth theories in my mind
29:50whoa sunlight would therefore therefore be very diffuse this would create the
29:56effect of clouds casting a natural shadows the shadows would probably take
30:01the form of light and dark streaks across the sky is shown in figure 8 in a
30:06way both the spherical lens shield and the solar sails shield result in the Sun
30:11seemingly originating in the atmosphere the cause because of the severe decrease
30:17in the intensity of sunlight with the solar sails shield the cloud shadow
30:22effect would be even more dramatic and we’ve seen those pictures to figure 8
30:26clouds forming shadows resulting in streaks across the sky because of a
30:31severe decrease in intensity on the sunlight and it being so diffuse or
30:36seemingly originating in the atmosphere that’s why I was freaking out on people
30:40about anti crepuscular rays because that was a BS explanation and still is haha
30:48the solar sails shield could even I this them completely from a certain part of
30:54the earth’s surface if it has a built-in mechanism to close the opening in the
30:58center of the sale in fact control over the size of the opening would make it
31:02possible to have as much sunlight as possible rates the surface of the earth
31:06will also be able to hide whatever strange objects have come into the solar
31:10system much love to you both
31:14thank you chris potter repent by now everything is not normal fresh and happy
31:21and you have been lied to do some research
31:25have a good day bye now

Ajoutée le 22 août 2016

Anglais (Sous-titres automatiques)
0:00bon matin, il est chris potter i espère que vous avez un grand jour, il est août
0:05$ MOIS vingt-deuxième 2016 je vais couvrir un peu plus de points d’information
0:13en ce qui concerne la technologie potentielle derrière cacher des objets planétaires dans l’espace
0:21pour mon physicien ami j’ai travaillé sur un peu plus de détails sur le Soleil
0:26simulateur et je l’ai écrit un document sur le bouclier différent conçoit le meilleur
0:33se révèle être une voile solaire JETP oh je peux maintenant tenir compte des faisceaux lumineux de
0:41anneau lumineux et circulaire autour des dispositifs de simulation Sun vus de l’ISS, il
00h48transforme ce qu ‘il se révèle
0:50Excusez-moi qu’il est un peu comme un phare
0:54cela devient des gens intéressants pour le moins
1:01nous allons donc aller de l’avant et procéder allons nous allions juste à lire à travers
1:05le document et c’est juste comment nous allons travailler aujourd’hui
1:08ok, il y a deux documents et, comme je l’ai dit, je crois qu’il est probablement le meilleur moyen pour
1:13nous juste pour couvrir le matériel juste pour le lire en ligne droite et nous voilà
1:17artificielle la lumière du soleil la figure 1 ci-dessous montre un réseau de réflecteurs hexagonaux utilisés dans
1:23la construction de simulateurs Sun c’est un simulateur de fils à petite échelle rappelez-vous
1:29nous avons aussi grand blog package de l’agent et de steve olson qui ont mentionné similaires
1:34technologies ainsi que Jeff p
1:38Je pense que la NASA construit et assemblé à grande échelle l’un dans l’espace et l’utilise pour
1:43cacher les planètes et les étoiles dans le système solaire
1:46oh c’est vrai que nous sommes à ce que nous savons ici, il vient bébé réseau hexagonal de
1:55réflecteurs dans un dispositif de disque plat utilisés dans la construction de Sun
1:59simulateurs gosh l’action hexagonale la figure 2 montre la source de lumière d’un simulateur
2:09en haut à gauche, nous avons une lampe
2:12en face d’un réflecteur en haut à droite on voit que la vue latérale de la lampe,
2:17et réfléchir ou il y a généralement également un système de refroidissement derrière le réflecteur
2:26les lampes générer beaucoup de chaleur doivent à ce friggin les lampes utilisées ou
2:32quelque chose comme des lampes d’art à haute pression de mercure xénon
2:37whoa plusieurs types de lampes à arc sont utilisées de manière à fournir la gamme complète des
2:43les fréquences associées à la lumière du soleil
2:54Whoo Hoo
2:58pas toutes les lampes sont allumées en même temps, ils sont activés sélectivement
3:02à fournir une intensité appropriée et la distribution spectrale de façon à simuler
3:07la lumière du soleil, autant que possible
3:10wow l’effet de pulsation peut être due à ce système de commutation sélective
3:16commutation différentes lampes sur et en dehors des intervalles irréguliers lampe refroidissement ok
3:25système d’autres rayons lumineux lampe concave du réflecteur de lampe sont projetés
3:31mr avant. Lampe oh vous cherchez un peu familier ne sont pas vous haha la
3:39Sun source de lumière simulateur arrangement est fait de très de haute
3:44excusez-moi est constituée principalement d’une lampe de puissance supérieure et un réflecteur concave
3:48derrière elle alors disons de laisser profondément absorber cela. ok juste correct maintenant, nous allons continuer
3:57le diagramme du bas de la figure 2 montre comment les rayons lumineux se détachent, les lampes sont tous
4:02l’extinction de la lampe à venir sont tous dirigés vers l’avant que le réflecteur
4:07réfléchit tous les rayons qui sont incidents sur le long d’une direction horizontale, ceci est
4:14obtenir les gars fous la figure 3 montre le taux de réflecteur monté sur un plat
4:20disque dans un miroir convexe placé au-dessus du centre du disque plat tel est le
4:25partie arrière de la lampe à disque plat de dispositif de simulation Sun et le réflecteur monté sur
4:31un disque plat miroir concave en face du disque frais ok
4:35ok intéressante 3r lumière livre la figure 3 source lumineuse tableau à l’arrière de la
4:42dispositif de simulateur Sun est composé de réflecteurs hexagonales forme concaves
4:47monté sur un disque plat d’un miroir concave est montée au-dessus du centre du méplat
4:51disque i apprécie les chiffres et nous sorte de reformule andrey coussin du
4:59informations parce que je pense qu’il est une bonne technique d’apprentissage et d’enseignement
5:04la figure 4, nous allons procéder à montre l’ensemble du dispositif de simulation de la Sun
5:11oui à l’arrière, nous avons le disque plat avec des lampes et des réflecteurs montés sur elle
5:17en face du disque et des lampes à plat, nous avons un miroir concave et devant
5:21que nous avons un grand miroir concave suivi d’un grand miroir convexe
5:26ces grands miroirs ont des trous à travers leurs centres de sorte que la lumière peut passer
5:32grâce à l’avant de l’appareil il y a un petit réflecteur convexe viennent
5:38comment ces gars comprendre cela les flèches orange représentent ah rayons lumineux
5:45se détacher des lampes et des réflecteurs montés sur le disque plat à l’arrière de la
5:49bleu et rayons verts illustrés ce qui arrive à la lumière provenant de l’arrière de
5:54le disque blu-ray montre ce qui se passe à la lumière au départ de
5:59quelque part entre le centre et le bord du dos
6:03excusez-moi faisons cela à nouveau le blu-ray montre ce qui arrive à
6:09la lumière au départ de quelque part entre le centre et le bord du disque arrière
6:15la flèche verte illustre ce qui arrive à réseau au départ de l’arête extérieure
6:21du disque plat miroirs convexes maintenant courbes de surface réfléchissantes vers l’extérieur dans
6:28le centre
6:29il est une explication parfaite cause des rayons incidents de diverger et concave
6:35miroirs riff ok nous allons le faire à nouveau maintenant miroirs convexes courbes de surface réfléchissante
6:42vers l’extérieur dans les rayons cause centre d’incidents à diverger et miroirs concaves
6:47surface réfléchissante incurvée dans les rayons cause centre d’incidents à converger
6:52gotcha en suivant la verdure, nous voyons qu’il frappe d’abord le grand concave
7:00miroir qui en résulte et Ray convergeant après réflexion vers la
7:07retour disque plat frapper l’arrière petit miroir concave vous êtes génial
7:12le rayon est réfléchi à nouveau à ce miroir
7:15Convergys un peu plus se déplaçant à travers le trou entre la grande et concave
7:20miroirs convexes et il est alors réfléchie sur le petit convexe complexe reflétant
7:28la surface à l’avant du dispositif, le rayon de la grande diverge vers
7:34miroir convexe et diverge loin du grand miroir convexe
7:39enfin, il passe par les lentilles de Fresnel qui été là soulevées afin que
7:45ils sortent de l’appareil dans une configuration parallèle, regardons ce mec
7:51whoa ok rayons lumineux provenant de la lampe et le réflecteur bureau plat avec lampe et
8:04réseau réflecteur
8:07ok c’est cool et nous avons eu le genre vert fait le même droit
8:18lentilles de Fresnel
8:26grand miroir convexe grand miroir concave convexe petite surface réfléchissante petite
8:35surface réfléchissante convexe complexe ok petit miroir concave grand regard concave
8:41Je vais être complètement élémentaire avec ce s’il vous plaît pardonnez-moi pour seulement
8:48étant que ce que parce que je pense que ce la façon dont nous devons présenter cette
8:52fils matériel configuration similaire
8:54excusez-moi chiffre pour dispositif de simulateur de soleil vu de côté
8:59ok ce coussin nouveau reformulant est composé d’une source lumineuse de disque un grand retour
9:05miroir concave un grand miroir convexe d’un petit miroir concave un petit convexe
9:11surface réfléchissante une lentille de Fresnel de type phare à l’avant de l’appareil
9:16les rayons bleus et verts illustrent le chemin suivi par la lumière provenant à
9:21différents points du disque arrière ce qui est excellent, vous basculez la nation sur
9:29figure à quatre que je viens de lire que vous avez jamais lu à nouveau ok désolé je viens
9:37lu que je me excuse ok
9:39le contour de la lumière quittant le simulateur solaire à travers les lentilles de Fresnel est
9:43illustré à la figure 5 sur la droite sur la gauche
9:48la figure 5 montre que, après l’divergeant depuis la surface de la grande convexe
9:52les rayons lumineux passent par un miroir de Fresnel et les lentilles de sortie parallèles entre eux
9:57tout comme un fils fait faire ya Figure 5 direction des rayons lumineux passant par
10:07les amis avant tout se termine après réflexion sur le miroir convexe avant
10:12et le contour général du simulateur solaire tel que vu depuis l’avant de celui-ci
10:18c’est fou que, puisque les grands miroirs sont circulaires
10:25nous pouvons nous attendre le contour du Soleil simulé soit circulaire
10:30Excusez-moi, nous ne pouvons pas oublier que les sources de lumière sont de forme hexagonale et
10:36qui se traduit par le contour de l’ensemble du réseau de réflecteurs pour être hexagonale
10:42forme ainsi ceci est illustré par la figure 1 bien qu’un fils réelle
10:47dispositifs de simulation orbite serait beaucoup plus grand souvenir de tous ceux
10:54espace de titan top-secret lance pour les années qui ont arrêté, je ne sais pas combien de temps
11:04il y a, mais serrer les missions Titan ils ont juste continué à aller avec toutes sortes de
11:10trucs entassés là-dedans
11:14roquettes et ils sont toutes les missions classées
11:18qu’est-ce qu’ils pris là-haut se pencher sur le Titan lance n’y a pas beaucoup
11:24informations que vous allez trouver, mais ce serait une excellente façon de construire
11:28infrastructure dans l’espace très simple
11:31wow vous devez les gens penser que nous sommes idiots
11:37quel que soit nous allons essayer ce nouveau ok je me excuse peu de commentaires là
11:43nous reviendrons ici
11:44cela signifie que le rasoir elle est issue d’une zone sur le disque arrière avec le
11:49contour hexagonal et l’augmentation finale divergente du miroir convexe sera
11:54conserver ce contour tout à fait logique, il est donc possible de voir
11:58pourquoi lens flares révèlent des formes et des cercles hexagonales avec des points dans le milieu
12:03ce sont les images des sources de lumière des lampes circulaires et hexagonaux
12:07réflecteurs à l’arrière de c’est le dispositif il y a encore un problème de
12:13le montage des miroirs sans distribuer la lumière la meilleure solution
12:17est probablement de limiter l’ensemble. dispositif et un cylindre cylindrique énorme
12:22ou d’un conteneur
12:23Excusez-moi, il y aura des supports pour la petite surface réfléchissante à l’avant, il
12:29serait obtenir de la manière et de provoquer et de jeter un peu d’ombre
12:34la surface réfléchissante avant circulaire entraînerait également une ombre éventuellement
12:39conduisant à un cercle noir vu dans le centre de la simulation Sun si la
12:44spectateur est directement en ligne avec elle la nature de la vérité ne l’est pas si écrasante
12:55juste un peu gênant de coupes et divise en morceaux
13:00ouais enfin, afin de rendre le dispositif aussi brillant que possible, il est une bonne idée
13:05placer une lentille convergente à l’avant de l’ensemble formant miroir cette lentille devrait
13:10puis plier les rayons lumineux divergents réfléchis par le miroir convexe avant
13:15vers l’avant pour qu’ils sortent du simulateur solaire parallèlement les uns aux autres
13:19ok le grand effet de bouclier circulaire, nous voyons une des images du Soleil de l’ISS
13:25et les faisceaux de lumière en marche à travers le centre du Soleil simulé semble
13:29due aux lentilles amis à effet de phare monté à l’avant du
13:33Dispositif pour voir que cela est l’avis de cas à quel point le Soleil simulé
13:39vu dans nos cieux, je savais qu’il montre la figure 6, avec ses poutres trop lumineuses de
13:46en cours d’exécution à travers la lumière que je me demandais toujours ce que cette chose était
13:50et nous pouvons voir pourquoi vous aimez des vêtements légers à travers l’air, il est comme whoa
13:58l’homme whoa ressemble le flash de lumière d’un phare
14:03Lisons ce nouveau pour voir que cela est l’avis de cas à quel point la
14:08simulée Sun comme on le voit dans nos cieux représentés à la figure 6, avec ses poutres trop lumineux
14:13de courir la lumière à travers elle ressemble à l’éclat de la lumière d’un phare montré
14:17la figure maintenant cela est juste comprendre 6, on va aller souffler simulateur de fils et
14:24ce gars a exposé la forme hexagonale exacte attendue et aussi familier
14:30faisceaux lumineux émané du centre laissez-moi relire mon fils excuses
14:35simulateur dans le ciel présentant la forme hexagonale prévue et aussi la
14:40Les êtres familiers de lumière émanant du centre
14:42wow c’est ridicule
14:47le flash lumière du phare a une poutre verticale brillante de la lumière en cours d’exécution
14:52à travers le centre et deux autres poutres diagonales qui ne sont pas presque aussi brillante cette
14:57lumière flash flash est produit avec la lentille représentée sur la droite dans la figure 7 du
15:03faisceau vertical lumineux est produit lorsqu’un rayon lumineux est incident sur l’espace
15:08entre la lentille circulaire centrale et le premier prisme semi-circulaire au-dessus du
15:13centre central excusez-moi lentille circulaire où rayon est incident à ce stade, il
15:20est pas plié mais continue en ligne droite Ceci est illustré dans la figure 8
15:25quand une lentille de Frenzel sphérique que celle représentée sur la droite de la figure 9 est utilisé
15:31au moins deux faisceaux lumineux de plus léger produit les deux faisceaux sont les plus brillants
15:36généralement à 90 degrés par rapport à l’autre
15:45flash blanc d’un phare avec la rotation lentille amis lentilles d’amis
15:50utilisé par ce phare est indiqué sur la droite
15:53whoa il semble tellement fou frais ok
16:00la figure 8 lorsque l’incident de rayons de lumière au point indiqué, il ne fait que va
16:05à travers et une ligne droite créant votre faisceau de lumière vertical
16:12haha wow si ce n’est pas la meilleure explication à ce que nous voyons
16:20Je ne sais pas ce qui est le péché simulateur la figure 9 de l’ISS est plusieurs faisceaux
16:26de la course de lumière à travers le centre de l’être vertical étant les plus brillants et
16:30l’anneau circulaire autour d’elle
16:32Je suis d’accord Wow la figure 9 montre que les simulateurs Sun vus de l’avis ISS
16:41qu’il a un faisceau principal vertical lumineux de la lumière en cours d’exécution à travers son centre
16:45un autre faisceau pas aussi lumineux se déplaçant horizontalement et une lumière diagonale quelques
16:52poutres avis également que le simulateur Sun est entouré par un chiffre d’anneau circulaire
16:589 montre que le flash de lumière d’un phare en utilisant un Frenzel sphérique
17:02lentille du type représenté sur la droite
17:04remarquer que le flash de lumière a un anneau autour d’elle semblable au Soleil
17:08simulateur image à partir des faisceaux de lumière ISS émanant du centre aussi
17:12ne sont pas visibles, mais mais ne sont pas aussi longtemps que la poutre principale et la figure 7 probablement
17:21parce qu’il n’a pas été très sombre lorsque l’image du flash a été prise la figure 9
17:26flash de lumière sur la gauche du phare en utilisant les amis sphériques
17:30lentilles est affiché sur la droite toute la partie droite 2 ou reprendre momentanément
17:36vous, je les gens chris potter partie deux conceptions de bouclier possible différents merci
17:42masquer les objets proches du Soleil et dans la lentille du système solaire en orbite
17:47c’est la conception la plus simple possible pour un bouclier et il a l’avantage de
17:52la production ensoleillée perdre est juste la lentille et ne réfracte la lumière du soleil sur les bords
17:59ceci avec cela fera un objet proche de la surface du soleil hors-focus
18:03twills rayons provenant de la partie centrale du Soleil passent par la figure tranquille
18:09La figure 1 illustre l’effet du bouclier simple lentille aurait sur la lumière du soleil se fixe un
18:14protéger ce lieu entre le Soleil et un spectateur sur la surface de la terre qui
18:19spectateur voit l’image affichée sur le droit Central Sun avec le halo autour de lui
18:34Wow figure 1 blason réalisé à partir d’une lentille avec la surface plane et des bords convexes
18:39la lentille doit avoir au moins la même taille apparente est le Soleil et quel que soit
18:46altitude orbitale il est placé que cela était comme l’explication parfaite pour
18:53ce que j’ai essayé de dire pendant une longue période pour calculer la taille de cette lentille
18:58aurait besoin d’être nous devons calculer la largeur angulaire du Soleil du Soleil
19:03Earthdance distance est cent et 49 millions six 100000 km
19:10et le rayon du Soleil est de 696 mille kilomètres qui était grande
19:15L’angle du soleil avec un représentant par d figurée est bien pas figuré d mais
19:23espace réservé d dirai simplement d Chris venir sur
19:28vous avez oublié votre calcul est égal au diamètre deux fois le rayon r / la
19:34soleil-terre la distance R majuscule ok nous allons faire cela à nouveau
19:38angulaire avec le capital d du soleil est égal au diamètre deux fois le rayon
19:43R minuscules divisée par la distance Terre-Soleil R majuscule ok ce serait
19:52la formule et nous obtenons de haute technologie maintenant c’est impressionnant
19:58si le diamètre apparent du soleil, à une altitude comparable à celle de l’ISS
20:03IE à environ un égal 5 400 kilomètres excusez-moi
20:13ok je suis une sorte de pensée ici pour une seconde d est égal à R sur R est égal à neuf
20:19pointer trois fois dix à la troisième rad négative parenthèses 180 degrés pirate
20:26équivaut à . 53 degrés de sorte que le diamètre apparent de sens a une altitude
20:31comparable à celui de l’ISS IE égale à environ un à quatre cents kilomètres
20:35est d égal à égal les bovins da neuf virgule trois fois dix à la troisième négative
20:40rad par 10 à la cinquième M est égal à 3,72 fois dix à la troisième M est égal à 3,72
20:50kilomètres fois. 62 miles plus d’un kilomètre est égal à 2,3 miles
20:56whoa qui est immense, donc il peut être préférable de le placer dans une orbite plus basse
21:04Wow avec une orbite de cent kilomètres de la lentille serait seulement à être. six miles
21:13ou . 9 3 kilomètres de diamètre
21:15qui est encore un énorme Wow à une altitude d’orbite de 40 kilomètres l’une
21:20diamètre de la lentille requise ne serait 320 372 m ou mètres. 23 miles
21:36salut chris potter part3 il est possible d’obtenir l’aberration chromatique sur les bords de
21:42cette lentille due à une séparation des différentes fréquences qui composent blanc
21:47ceci est illustré par la figure 2 des rayons parallèles provenant de la lentille Soleil et il
21:54va-boom chiffre 2 aberrations chromatiques peut conduire à la séparation des couleurs
21:59donnant l’impression d’un arc en ciel complet autour du whoa mec Sun
22:05Wow la lentille sphérique lentille convergente sphérique est une autre possibilité
22:15pour bouclier comme une lentille sphérique est soumise à l’aberration qui était qui
22:20se traduirait par un éventuel effet fils de halo dû à une très grande distance
22:25impliqué cette lentille devrait être d’environ la même taille que la première lentille
22:29bouclier décrit si elle est placée à la même altitude de l’orbite, mais en outre
22:34la longueur focale de la lentille sphérique doit correspondre avec l’orbitale ajoutée
22:38l’attitude de l’altitude, mais en plus la longueur focale de la lentille sphérique doit être
22:44rencontré l’altitude orbitale afin que le Soleil vu de la surface de
22:49cette terre pour ajouter la taille attendue cette merveilleuse explication est parfaite
22:55J’ai pensé tout cela, mais je ne peux pas je ne pourrais jamais aimé expliquer
23:01techniquement c’est donc c’est excellente ce type de blindage est illustré dans
23:06la figure 3 aberration sphérique conduit à deux points focaux la plupart de la lumière qui
23:11à travers la lentille converge vers le point focal principal, mais la lumière en passant par
23:15les bords extérieurs des bords extérieurs de la lentille convergeant vers la seconde
23:20focal point
23:21cela se traduit dans la plupart de la lumière passe à travers l’objectif d’obtenir un fusible jour
23:25out-of-focus image du Soleil whoa dans le centre et la lumière passant par
23:33le bord extérieur du halo résultant en un objet proche de la surface du soleil
23:38ou devant le Soleil serait de mise au point pour un spectateur sur le terrain serait
23:41point focal secondaire ne pas être vu principal point focal
23:47gotcha ils vous figure 3, l’utilisation de lentille convergente spirituelle comme un bouclier
23:53application à l’image Soleil et halo en raison de l’aberration sphérique gotcha
23:58première personne Je pense est Lizzie salle quand je vois cette image cette lentille
24:08peut être utilisé pour masquer un objet hors de l’atmosphère de la Terre non seulement un
24:12objet près de la surface du soleil à la lentille est placée entre l’objet
24:17et un spectateur sur la surface de la Terre et de l’objet serait de mise au point dans le
24:21spectateur verrait quelque chose comme ce qui est montré dans la figure 4 Lizzy a beaucoup de
24:26des images comme cela qu’elle a soumis à moi ils sont identiques
24:30out-of-focus objets que nous en serions vu à un point plus loin que
24:35le point focal d’une lentille convergente puisque les téléspectateurs seront toujours en mesure de
24:42comprendre qu’il ya quelque chose là-bas, même si les images de mise au point
24:45ce type de bouclier est pas la meilleure façon de cacher les objets de la surface de
24:49Soleil ok le simulateur Sun ou voile solaire étonnant décrit ci-dessous feraient un
24:58mieux de cacher ces objets Je suis d’accord
25:01bleu Jeff p bébé si la lentille est juste la bonne taille pour toute la lumière de la
25:06Sun pour aller à travers elle à une certaine altitude orbitale déplacer la lentille à un
25:11légèrement inférieure orbite éliminerait le halo que cela arriverait parce que la lumière du soleil
25:16est visualisé par un observateur à un point sur la surface de la terre correctement alignée
25:20avec le Sénat l’objectif passerait par la partie centrale de la lentille et
25:24aucun ne passer par le bord extérieur
25:26Cependant l’image résultante du Soleil serait similaire parce que la focale
25:30point la lentille serait plus proche de la surface de la terre,
25:33ceci est illustré dans la figure 5 figure 5 déplaçant le bouclier de lentille sphérique à un
25:39légèrement inférieure résultats / orbite et pas de lumière en passant par les bords de la
25:43lentille qui supprime le halo de l’image produite qui serait un meilleur
25:50alternative à faire cela
25:53secrètement parce que bien sûr, vous savez que nous ne voulons pas faire quoi que ce soit dans le nous ouvert
25:57je veux juste faire
25:57tout en secret, afin de rendre la lentille moins encombrant d’amis lentille
26:03qui contient toute l’exactitude de courbure, mais il a une fraction de la
26:07l’épaisseur peut être utilisé à la place de la lentille sphérique et je peux vous dire que
26:10la chose d’amis Allen qui ressemble homme regardant tellement cool et bizarre maintenant les lentilles
26:15joue que le bord de l’atmosphère terrestre et un point focal est bien
26:18dans l’atmosphère de l’air dans la région environnante serait le point focal
26:22chauffer ce qui pourrait conduire à des perturbations graves des conditions météorologiques et
26:26tempêtes violentes
26:28wow mec tous les jours à son tour serait vous s’il vous plaît écouter ce que je suis en train de partager avec
26:40voile solaire, une autre possibilité est une voile solaire comme un bouclier tel est le meilleur
26:46choix comme un bouclier, car il peut non seulement cacher des objets à proximité de la surface du
26:51soleil, mais aussi des objets partout dans le ciel le genre de voiles solaires représenté sur la figure
26:566 a une petite ouverture au centre donc pour un point situé sur la surface de la Terre
27:01juste en dessous de la voile solaire seulement des rayons de lumière à l’origine au centre
27:05obtenir tout à coup à travers l’ouverture du reste de la lumière du soleil frappant la vente
27:09ne serait pas atteindre la surface de la figure de la terre 6 solaire voile bouclier il y a
27:18beaucoup de brevets pour cela et que les simulateurs hexagonaux ainsi par la voie afin
27:25ces concepts ne sont pas vous savez champ gauche certaines personnes folles sont à venir
27:32avec cela est effectivement vrai scientifique physicien de génie action juste ce
27:39est comme les vrais gens de deal, je ne peux pas me expliquer tout, mais cet individu
27:44peut et je veux vraiment vous de faire attention
27:47désolé de vous interrompre sur que je présente mes excuses, revenons à l’ordre matériel pour
27:51faire de cette image du Soleil vu par un observateur sur la surface de la terre
27:55être la bonne taille, car voulez absolument garder la déception que vous n’avez pas
28:00quelqu’un que vous ne voulez pas deviner les gens comme Chris Potter essayer de comprendre
28:04le mensonge droite afin de rendre l’image du Soleil vu par un observateur sur la
28:09surface de la Terre pour être la bonne taille et mon
28:11vous bonne idée de monter une lentille sur le côté terre-face de la voile solaire ce
28:18agencement est illustré sur la figure 7, où la section transversale par le milieu
28:22de la voile solaire est montré la voile solaire est encore un meilleur bouclier
28:29la lentille serait capable de cacher des objets un peu plus loin de la
28:33surface du soleil ainsi que d’obtenir l’impression que le soleil est là où il est
28:37censé être avec son talon qui est également possible de créer un effet de halo si
28:43la lentille de la même taille que l’ouverture au centre de la vente, comme illustré
28:47dans la figure 3, la raison pour laquelle je suis rire est à peu près tout ce que cela est un
28:51qui est expliqué dans ce document est ce que nous avons tous été voir et de prendre
28:56images de rayons de la voile solaire ouverture Soleil de centre solaire lentille de voile
29:03l’image produire merci coupe très simple de voile solaire montrant la
29:08ouverture centrale inférieure montée sur le côté faisant face à la terre et l’image attendue
29:13du Soleil produit l’utilisation d’une voile solaire le bouclier serait sévèrement
29:18diminué la quantité de lumière solaire qui atteint la surface en dessous de la vente
29:22le Soleil serait perçu comme de la même taille, mais l’intensité de la lumière
29:27serait gravement diminué aussi le Soleil semble provenir du
29:31atmosphère au-dessus des nuages plutôt que d’un point et l’espace
29:41whoa que, tout comme soufflé loin certaines des théories de la terre à plat dans mon esprit
29:50whoa la lumière du soleil serait donc par conséquent être très diffus cela créerait la
29:56effet des nuages jetant une ombre naturelles les ombres seraient probablement prendre
30:01la forme de stries claires et sombres dans le ciel est représenté dans la figure 8 dans un
30:06manière à la fois le bouclier de lentille sphérique et le résultat des voiles de protection solaire dans le Soleil
30:11provenant apparemment dans l’atmosphère la cause en raison de la diminution sévère
30:17l’intensité de la lumière du soleil avec les voiles solaires protéger l’ombre des nuages
30:22effet serait encore plus dramatique et nous avons vu ces images à la figure 8
30:26nuages formant des ombres résultant en traînées dans le ciel à cause d’un
30:31diminution importante de l’intensité de la lumière du soleil et qu’il soit si diffus ou
30:36provenant apparemment dans l’atmosphère qui est pourquoi je flippe sur les gens
30:40à propos de rayons anticrépusculaires parce que ce fut une explication de BS et est encore haha
30:48la voile solaire bouclier pourrait même que je présente complètement à partir d’une certaine partie de
30:54la surface de la terre, si elle dispose d’un mécanisme intégré pour fermer l’ouverture dans le
30:58centre de la vente dans le contrôle de fait sur la taille de l’ouverture, il serait
31:02possible d’avoir autant la lumière du soleil que les taux possibles de la surface de la terre
31:06sera également en mesure de se cacher quelque objets étranges sont venus dans le solaire
31:10système beaucoup d’amour à vous deux
31:14merci chris potter repentez maintenant tout est pas normal frais et heureux
31:21et vous avez été menti à faire des recherches
31:25avoir une bonne bye jour maintenant

Ajoutée le 22 août 2016


Bases de la Technologie NASA 

Le Miroir Primaire 

Exemple Application au Télescope Spatial –

En utilisant d’autres propriétés de la Lumière et matériaux – Jeux de Diffractions Convergences Détournant la Lumière – En résultent une autre application celle du Dispositif de Dissimulation de la NASA ‘Faux-soleil’ ou ‘cloaking device’.  … (Ex ci-dessus)




The Primary Mirror

The Primary Mirror

An Overview

One of the James Webb Space Telescope’s science goals is to look back through time to when galaxies were young. Webb will do this by observing galaxies that are very distant, at over 13 billion light years away from us. To see such far-off and faint objects, Webb needs a large mirror. A telescope’s sensitivity, or how much detail it can see, is directly related to the size of the mirror area that collects light from the objects being observed. A larger area collects more light, just like a larger bucket collects more water in a rain shower than a small one.

Webb Telescope’s scientists and engineers determined that a primary mirror 6.5 meters (21 feet 4 inches) across is what was needed to measure the light from these distant galaxies. Building a mirror this large is challenging, even for use on the ground. A mirror this large has never before been launched into space!

JWST and Hubble mirror comparison

If the Hubble Space Telescope’s 2.4 meter mirror were scaled to be large enough for Webb, it would be too heavy to launch into orbit. The Webb team had to find new ways to build the mirror so that it would be light enough – only one-tenth of the mass of Hubble’s mirror per unit area – yet very strong.

The Webb Telescope team decided to make the mirror segments from beryllium, which is both strong and light. Each segment weighs approximately 20 kilograms (46 pounds).

The Webb Telescope team also decided to build the mirror in segments on a structure which will fold up, like the leaves of a drop-leaf table, so that it can fit into a rocket. The mirror would then unfold after launch. Each of the 18 hexagonal-shaped mirror segments is 1.32 meters (4.3 feet) in diameter, flat to flat. (Webb’s secondary mirror is 0.74 meters in diameter.)

JWST mirror assembly segment
The diagram above shows the three 
different mirror prescriptions that the segments have.

The hexagonal shape allows a segmented mirror with high filling factor and six-fold symmetry. High filling factor means the segments fit together without gaps. If the segments were circular, there would be gaps between them. Symmetry is good because there need only be 3 different optical prescriptions for 18 segments, 6 of each (see above right diagram). Finally, a roughly circular overall mirror shape is desired because that focuses the light into the most compact region on the detectors. A oval mirror, for example, would give images that are elongated in one direction. A square mirror would send a lot of the light out of the central region.

JWST mirrors

Once in space, getting these mirrors to focus correctly on faraway galaxies is another challenge. Actuators, or tiny mechanical motors, provide the answer to achieving a single perfect focus. The primary mirror segments and secondary mirror are moved by six actuators that are attached to the back of each mirror piece. The primary mirror segments also have an additional actuator at its center that adjusts its curvature. The telescope’s tertiary mirror remains stationary.

Lee Feinberg, Webb Optical Telescope Element Manager at NASA’s Goddard Space Flight Center in Greenbelt, Md. explained, « Aligning the primary mirror segments as though they are a single large mirror means each mirror is aligned to 1/10,000th the thickness of a human hair. What’s even more amazing is that the engineers and scientists working on the Webb telescope literally had to invent how to do this. »

Watch the the actuators being attached to the back of a telescope mirror in this « Behind the Webb » video:

These diagrams show the back of the mirrors and the actuators.

The Anatomy of a JWST MirrorThe Back of a JWST Mirror

One further challenge is to keep Webb’s mirror cold. To see the first stars and galaxies in the early Universe, astronomers have to observe the infrared light given off by them, and use a telescope and instruments optimized for this light. Because warm objects give off infrared light, or heat, if Webb’s mirror was the same temperature as the Hubble Space Telescope’s, the faint infrared light from distant galaxies would be lost in the infrared glow of the mirror. Thus, Webb needs to be very cold (« cryogenic »), with its mirrors at around -220 degrees C (-364 degree F). The mirror as a whole must be able to withstand very cold temperatures as well as hold its shape.

To keep Webb cold, it will be sent into deep space, far from the Earth. Sunshields will shade the mirrors and instruments from the Sun’s heat, as well as keep them separated from the warm spacecraft bus.

Here is an animation of how light travels through the telescope. JWST is what is known as a three mirror anastigmat. In this configuration, the primary mirror is concave, the secondary is convex, and it works slightly off-axis. The tertiary removes the resulting astigmatism and also flattens the focal plane. This also allows for a wider field of view.

How Did NASA Come Up With These Ideas?

NASA set out to research new ways to build mirrors for telescopes. The Advanced Mirror System Demonstrator (AMSD) program was a four-year partnership between NASA, the National Reconnaissance Office and the US Air Force to study ways to build lightweight mirrors. Based on the ASMD studies, two test mirrors were built and fully tested. One was made from beryllium by Ball Aerospace; the other was built by Kodak (formerly ITT, now the Harris Corporation) and was made from a special type of glass.

A team of experts was chosen to test both of these mirrors, to determine how well they work, how much they cost and how easy (or difficult) it would be to build a full-size, 6.5-meter mirror. The experts recommended that beryllium mirror be selected for the James Webb Space Telescope, for several reasons, one being that beryllium holds its shape at cryogenic temperatures. Based on the expert team’s recommendation, Northrop Grumman (the company that is leading the effort to build Webb) selected a beryllium mirror, and the project management at NASA’s Goddard Space Flight Center approved this decision.

Why Beryllium?

a marble sized piece of beryllium

Beryllium is a light metal (atomic symbol: Be) that has many features that make it desirable for Webb’s primary mirror. In particular, beryllium is very strong for its weight and is good at holding its shape across a range of temperatures. Beryllium is a good conductor of electricity and heat, and is not magnetic. (At left is a picture of a marble-sized piece of Beryllium)

Because it is light and strong, beryllium is often used to build parts for supersonic (faster-than-the-speed-of-sound) airplanes and the Space Shuttle. It is also used in more down-to-Earth applications like springs and tools. Special care has to be taken when working with beryllium, because it is unhealthy to breathe in or swallow beryllium dust.

How and Where the Beryllium Mirrors Were Made

The James Webb Space Telescope’s 18 special lightweight beryllium mirrors have to make 14 stops to 11 different places around the U.S. to complete their manufacturing. They come to life at beryllium mines in Utah, and then move across the country for processing and polishing. In fact, the mirrors make stops in eight states along the way, visiting some states more than once, before journeying to South America for lift-off and the beginning of their final journey to space. Explore an interactive map showing the journey of the mirrors.

The beryllium to make Webb’s mirror was mined in Utah and purified at Brush Wellman in Ohio. The particular type of beryllium used in the Webb mirrors is called O-30 and is a fine powder. The powder was placed into a stainless steel canister and pressed into a flat shape. Once the steel canister was removed, the resulting chunk of beryllium was cut in half to make two mirror blanks about 1.3 meters (4 feet) across. Each mirror blank was used to make one mirror segment; the full mirror is made from 18 hexagonal segments.

Beryllium Mirror Segments

Once the mirror blanks passed inspection, they were sent to Axsys Technologies in Cullman, Alabama. The first two mirror blanks were completed in March 2004.

Axsys Technologies shaped the mirror blanks into their final shape. The process of shaping the mirror starts with cutting away most of the back side of the beryllium mirror blank, leaving just a thin « rib » structure. The ribs are only about 1 millimeter (about 1/25 of an inch) thick. Although most of the metal is gone, the ribs are enough to keep the segment’s shape steady. This makes each segment very light. A beryllium mirror segment is 20 kilograms in mass. (A full primary mirror segment assembly including its actuator is about 40 kg.)

Back of the mirror

The front surface of each blank was smoothed out and shaped properly so that it will be ready for its final position in the large mirror.

Mirror Blank

This movie shows the mirror blanks being made at Brush Wellman and shaped at Axsys.

Mirror Polishing

Once the mirror segments were shaped by Axsys, they were sent to Richmond, CA, where SSG/Tinsley polished them.

Mirror Blank

SSG/Tinsley started by grinding down the surface of each mirror close to its final shape. After this was done, the mirrors were carefully smoothed out and polished. The process of smoothing and polishing is repeated until each mirror segment is nearly perfect. At that point, the segments travel to NASA’s Marshall Space Flight Center in Huntsville (MSFC), Alabama for cryogenic testing.

Since many materials change shape when they change temperature, a test team from Ball Aerospace worked together with NASA engineers of Marshall Space Flight Center’s X-ray and Cryogenic Facility (XRCF) to cool the mirror segments down to the temperature Webb will expericence in deep space, -400 degrees Farenheit (-240 degrees Celsius).

Cryogenic testing of the primary mirror segments began in at Marshall’s XRCF by Ball Aerospace in 2009.

Ball Aerospace Ball Aerospace

The change in mirror segment shape due to the exposure to these cryogenic temperatures was recorded by Ball Aerospace Engineers using a laser interferometer. This information, together with the mirrors, traveled back to California for final surface polishing at Tinsley.

This short video shows part of the mirror polishing process. The mirrors’ final polish was completed in June of 2011.


You can learn more about how the mirror segments are polished in this « Behind the Webb » video podcast:


Gold Coating

Once a mirror segment’s final shape is corrected for any imaging effects due to cold temperatures, and polishing is complete, a thin coating of gold is applied. Gold improves the mirror’s reflection of infrared light.

The James Webb Space Telescope's Mirrors

Some Technical Details: How is the gold applied to the mirrors? The answer is vacuum vapor deposition. Quantum Coating Incorporated did the coatings on our telescope mirrors. Essentially, the mirrors are put inside a vacuum chamber and a small quantity of gold is vaporized and it deposits on the mirror. Areas that we don’t want coated (like the backside and all the mechanisms and such) are masked-off. Typical thickness of the gold is 1000 Angstroms (100 nanometers). A thin layer of amorphous SiO2 (glass) is deposited on top of the gold to protect it from scratches in case of handling or if particles get on the surface and move around (the gold is pure and very soft).

This Behind the Webb video is about mirror coating:

Below is the engineering design unit primary mirror segment (flight spare) coated in gold by Quantum Coating Incorporated. Photo by Drew Noel.

gold-coated primary mirror EDU

After the gold coating was applied, the mirrors once again traveled back to Marshall Space Flight Center for a final verification of mirror surface shape at cryogenic temperatures. The mirror segments are now complete – they will soon travel to NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

gold-coated primary mirror EDU


The secondary mirror, went through a similar process – here it is after being gold-coated by Quantum Coating Incorporated.

gold-coated primary mirror EDU

In this video, you can follow the mirror’s journey from rough ore to precisely reflective, gold-coated segments:

The Assembled Mirrors

Here are photos of the assembled mirrors, and of the assembled OTIS – that is, the Optical Telescope Element and Integrated Science Instrument Module.

Below, mirror assembly – note the protective black covers on the mirrors:

MIrror Installation #7The last James Webb Space Telescope Primary Mirror SegmentThe uncovered mirrors: 

GoldeneyeStowed SecondaryPhoto de groupe avec JWST


Un Nouveau Simulateur Solaire Basé sur un Laser Supercontinuum pour Dispositif de Cellules Solaires et Caractérisation des Matériaux

(a) Répartition de la lumière projetée émise par un simulateur sortie de fibre.

(a) Projected light distribution emitted from the simulator output fiber.

A Novel Solar Simulator Based on a Supercontinuum Laser for Solar Cell Device and Materials Characterization

Afficher l'image d'origine

A Novel Solar Simulator Based on a Supercontinuum Laser for Solar Cell Device and Materials Characterization

Article (PDF Available)inIEEE Journal of Photovoltaics 4(4):1119-1127 · July 2014with63 Reads

DOI: 10.1109/JPHOTOV.2014.2321659
The design, operation, and application of a novel solar simulator based on a high-power supercontinuum fiber laser are described. The simulator features a multisun irradiance with continuous spectral coverage from the visible to the infrared. By use of a prism-based spectral shaper, the simulator can be matched to any desired spectral profile, including the ASTM G-173-03 air-mass 1.5 reference spectrum. The simulator was used to measure the efficiency of gallium arsenide (GaAs), crystalline silicon (Si), amorphous Si, and copper–indium–gallium–selenide (CIGS) thin-film solar cells, showing agreement with independent measurements. The pulsed temporal characteristic of the simulator was studied and would appear to have a negligible influence on measured cell efficiency. The simulator light was focused to a spot of approximately 8 μm in diameter and used to create micrometer-scale spatial maps of full spectrum optical-beam-induced current. Microscopic details such as grid lines, damage spots, and material variations were selectively excited and resolved on GaAs and CIGS cells. The spectral shaping capabilities were used to create output spectra appropriate for selectively light-biasing multijunction cell layers. The simulator was used to create variable blue-rich and red-rich spectra that were applied to a GaInP/GaAs tandem solar cell to illustrate the current-limiting behavior.


+ 10

Full-text (PDF)

Available from: John B. Schlager, Sep 10, 2014

A Novel Solar Simulator Based on a
Supercontinuum Laser for Solar Cell Device
and Materials Characterization
Tasshi Dennis, John B. Schlager, Senior Member, IEEE, and Kris A. Bertness, Senior Member, IEEE
Abstract—The design, operation, and application of a novel so-
lar simulator based on a high-power supercontinuum fiber laser
are described. The simulator features a multisun irradiance with
continuous spectral coverage from the visible to the infrared. By
use of a prism-based spectral shaper, the simulator can be matched
to any desired spectral profile, including the ASTM G-173-03 air-
mass 1.5 reference spectrum. The simulator was used to measure
the efficiency of gallium arsenide (GaAs), crystalline silicon (Si),
amorphous Si, and copper–indium–gallium–selenide (CIGS) thin-
film solar cells, showing agreement with independent measure-
ments. The pulsed temporal characteristic of the simulator was
studied and would appear to have a negligible influence on mea-
sured cell efficiency. The simulator light was focused to a spot of
approximately 8 μm in diameter and used to create micrometer-
scale spatial maps of full spectrum optical-beam-induced current.
Microscopic details such as grid lines, damage spots, and material
variations were selectively excited and resolved on GaAs and CIGS
cells. The spectral shaping capabilities were used to create output
spectra appropriate for selectively light-biasing multijunction cell
layers. The simulator was used to create variable blue-rich and
red-rich spectra that were applied to a GaInP/GaAs tandem solar
cell to illustrate the current-limiting behavior.
Index Terms—External quantum efficiency (EQE), metrology,
microscopy, multijunction, optical-beam-induced current, photo-
voltaic, responsivity, solar cell, solar simulator, spectral mismatch,
supercontinuum laser.
FURTHER improvements to the efficiency of solar cells for
all materials and technologies depend critically on a bet-
ter understanding of their optical and electrical characteristics.
The study of defects caused by impurities or crystalline grain
boundaries, artifacts from deposition and growth processes, and
third-generation materials having microarrays or structured con-
duction paths could all potentially benefit from a solar simulator
offering a diffraction-limited focus. In addition, the character-
ization of multijunction materials could benefit from selective
light biasing of the different junctions made possible by a source
with an accurately shaped spectrum delivered by a single colli-
mated beam [1]. Solar simulators are typically based on lamps,
such as the xenon arc-lamp [2], or arrays of light-emitting diodes
[3], [4]. However, it is challenging to efficiently apply these light
Manuscript received November 27,2013; revised April 10, 2014 and February
20, 2014; accepted February 6, 2014. Date of publication May 26, 2014; date
of current version June 18, 2014. This papers constitutes work of the U.S.
government and is not subject to copyright.
The authors are with the National Institute of Standards and Technology,
Boulder, CO 80305 USA (e-mail:;;
Color versions of one or more of the figures in this paper are available online
Digital Object Identifier 10.1109/JPHOTOV.2014.2321659
sources to measurement systems that require focused and/or
spectrally shaped light. Fundamentally, bulb-based and point
light sources typically radiate into large solid angles, thereby
generating a low number of photons for any single spatial mode.
This low spatial coherence makes it difficult if not impossible to
efficiently use optical beam processing to achieve diffraction-
limited focusing and/or arbitrary spectral shaping.
Recently, high-power supercontinuum lasers that offer spec-
tral coverage from the visible (blue) out to the infrared have be-
come commercially available [5]. These white-light lasers rely
on optical-fiber amplifier technology to raise the peak power of
a seed laser to around 100 kW per pulse. Launching these am-
plified pulses into a photonic crystal fiber results in the broaden-
ing of the spectrum of the seed laser through nonlinear optical
mixing. The nonlinear interactions are enabled by the unique
propagation characteristics of the photonic crystal fiber, which
include a single spatial mode and a flat chromatic dispersion pro-
file across the entire low-loss window of silica from about 400
to 2200 nm. The single mode creates a tight confinement of op-
tical power, and the flat dispersion allows phase-matching over
a broad wavelength range. As a result, a broad spectrum con-
taining watts of optical power can be generated within the sin-
gle spatial mode, enabling diffraction-limited free-space beam
propagation. However, unlike a flashed arc lamp that is pulsed
with a millisecond period, the supercontinuum laser emits a
train of subnanosecond pulses with a repetition rate at mega-
hertz frequencies. A primary concern when considering these
novel sources for solar simulation is whether the devices and
materials being investigated will respond as if being illuminated
by continuous sunlight.
In this study, we report on the use of a supercontinuum laser
as a solar simulator and demonstrate the characterization of pho-
tovoltaic devices and materials. After shaping the spectrum of
the laser, we measure the efficiency of a variety of sample solar
cells and examine whether the temporal characteristics of the
light influence the measured efficiency. We report on the appli-
cation of our focused simulator to the microscopic generation of
photocurrent and present spatial maps of full-spectrum optical-
beam-induced current (FS-OBIC) from sample solar cells. The
ability to arbitrarily spectrally shape the simulator was utilized
to create light-biasing spectra for the characterization of a tan-
dem cell with top-junction current-limiting behavior.
To construct our simulator, we used a commercially available
supercontinuum laser having more than 8 W of emission and a
U.S. Government work not protected by U.S. copyright.

Fig. 1. Supercontinuum spectra generated at various repetition rates. Inset:
80-MHz spectrum on a linear scale.
Fig. 2. Simulator system, including the mask geometry and sample illumina-
tion. M: mirror; BS: beamsplitter.
spectrum that spanned from below 450 nm to beyond 2200 nm.
The laser can operate at a selectable repetition rate between 1
and 80 MHz, with the output power scaling linearly with rate,
as shown on a logarithmic scale in Fig. 1. At 1 MHz, the total
emission was less than 200 mW, and the visible content was
weak. However, the inset of Fig. 1 shows the 80-MHz spectrum
on a linear scale and demonstrates that at this repetition rate,
the light content in the visible wavelength range dominates.
The output emission of the supercontinuum has a single mode
Gaussian beam profile, which can be collimated, shaped, or
focused with conventional optics.
Our strategy for spectrally shaping the source was to use a
prism-based dispersive spectrometer that was similar in design
to a femtosecond pulse shaper [6] and the NIST hyperspec-
tral image projector [7]. The output from the photonic crystal
fiber was collimated by a lens and was directed onto a prism,
as shown in Fig. 2. The highly dispersive prism of F2 glass
was used to spread the beam across a collimation mirror hav-
ing a focal length of 500 mm. The spectral beam was then
directed onto a planar mirror located at the focal point of the
collimation mirror to achieve maximum spectral resolution. Not
shown in Fig. 2 is a cylindrical lens before the prism, which ex-
panded the beam out of the plane of the page. In contrast with
Fig. 3. Spectral shaping of the 80-MHz supercontinuum to match an AM 1.5
reference spectrum.
a line focus, this expanded beam in the spectral plane allowed
varying amounts of light to be attenuated at any given wave-
length by static amplitude masks. The planar mirror then re-
turned the light back to the prism, where it was reshaped into a
10-mm diameter spatial beam. For broad-area full illumina-
tion of sample solar cells, the beam was focused into a multi-
mode fiber with a 200-μm core, as shown in Fig. 2. Broadband
parabolic reflectors were used to focus and collimate the light
in and out of the multimode fiber. As we will describe later, a
slightly different setup was used to create a focused spot for
Fig. 3 shows the measured irradiance spectrum of the sim-
ulator operating at 80 MHz after spectral shaping to match
the air-mass (AM) 1.5 reference spectrum (ASTM G-173-03)
[8]. Visually, the spectral match is quite good, with a profile
that lacks the sharp resonance features of xenon-lamp simula-
tors [9]. The integrated irradiance is 91.4 mW/cm2
as shown,whereas AM 1.5 is 94.1 mW/cm2. The spectral match below
450 nm is poor because the continuum generates very little light
in this region. This could be a concern for the illumination of
some types of cells, including multijunctions. Excluding the
400–500-nm band, the simulator easily meets the IEC 60904-9
Edition 2 (2007) standard for a class A spectral match and could
be made fully compliant with less mask attenuation in the 450–
500-nm band. Alternatively, several high-power light-emitting
diodes may be able to supplement the short-wavelength content.
The simulator can produce more than 7 suns of irradiance over
a1-cm2 area, with a temporal stability lasting hours at a time
after an initial warm-up period.
For the supercontinuum simulator to be a useful metrology
tool, it must produce the same illuminated response in photo-
voltaic materials as the sun or more traditional lamp-based sim-
ulators. To gain insight, we measured the power efficiency of
solar cells that had been independently characterized with lamp-
based simulators. These independent characterizations were not
certified calibrations and may have contributed significant un-
certainties, but were sufficient for the preliminary demonstration
of our novel simulator. Although expedient and promising, this
effort did not constitute a formal intercomparison of laboratory

Jsc (mA/cm2) Voc (V) Fill Factor (%) Eff. (%)
GaAs Cell:
NREL 17.7 1.001 85.7 15.2
NIST 1 14.1 0.987 82.3 11.5
NIST 2 17.7 0.996 82.5 14.5
c-Si Cell:
NREL 32.7 0.604 78.9 15.6
NIST 1 31.1 0.576 78.1 14.0
NIST 2 32.7 0.578 78.4 14.8
CIGS Cell 1:
NREL 30.7 0.733 78.5 17.7
NIST 2 30.7 0.735 78.6 17.7
CIGS Cell 2:
NREL 20.5 0.680 59.6 8.3
NIST 2 20.5 0.679 60.9 8.5
a-Si Cell 1: (A = 0.05 cm2)
NREL 18.3 0.855 62.3 9.8
NIST 2 18.1 0.831 58.3 8.8
a-Si Cell 2: (A = 1.0 cm2)
NREL 17.6 0.857 59.1 8.9
NIST 2 17.6 0.812 56.7 8.1
measurement methods. Our first-order assumption was that the
response of the cells was linear and independent of wavelength,
such that photons of different but sufficient energy may be ex-
changed to compensate for spectral mismatch [9].
Four different solar cell samples provided by the National Re-
newable Energy Laboratory (NREL) were used in our measure-
ments. One was an n-GaInP/p-GaAs heterojunction cell with a
total area of 0.29 cm2 [10]. The second cell was a crystalline sil-
icon (c-Si) device with a phosphorus-diffused emitter, full-area
Al-BSF, p-type Czochralski (1 0 0) structure with an area of
about 1 cm2 . The third sample was amorphous silicon (a-Si) with
a p–i–n a–Si:H structure on glass utilizing through-substrate il-
lumination and cell areas of either 0.05 or 1.0 cm2 . The fourth
device was a thin-film copper–indium–gallium–selenide (CIGS)
cell with an area of 0.42 cm2
The spectrally shaped 80-MHz output of our simulator was
collimated into a Gaussian-like beam (10-mm diameter), and the
central portion was masked with apertures to create a carefully
controlled irradiance or to match the active areas of the cells.
No aperture was used for the through-substrate illumination of
the a-Si cells. The spatial nonuniformity of the beam irradiance
after a 0.29-cm2 square aperture was measured using a scanning
pinhole and found to be about 25% and smoothly varying. The
total optical power through the apertures was measured with a
thermal power sensor and was adjusted to give a 1-sun irradiance
of 100 mW/cm2
The first set of measured characteristics for the GaAs and c–Si
cells is given in Table I as “NIST 1” and compared with indepen-
dent, but not certified, conventional measurements performed at
the NREL using lamp-based simulators. We estimate that the
repeatability for the NIST measurements was on the order of
1% efficiency using commercial current–voltage measurement
Equipment,1 whereas the absolute uncertainty was likely higher.
The agreement of the results is promising and indicates that the
simulator appears to be sun-like for GaAs and c-Si materials.
While the short-circuit current Jsc for GaAs has a discrepancy
of 20% with the NREL value, the c-Si value is within 5%. There
are a number of possible explanations for the apparent dis-
crepancies, beginning with the challenge of measuring absolute
efficiencies without using a reference cell. By setting the total ir-
radiance independent of wavelength, the results become subject
to spectral mismatch [9]. In particular, the inherent lack of light
below 450 nm, coupled with spectral mismatch at wavelengths
above the material responsivity, may have biased the irradiance
setting. It is likely that less than 1 sun of photons of sufficient
energy were actually delivered to the cells. This would have
influenced the GaAs cell more with its higher bandgap energy
and narrower quantum efficiency bandwidth.
In the second set of measurements, we treated these same
devices as reference cells and adjusted the simulator irradiance
to give Jsc specified by the NREL. The measured efficiencies
for this illumination are presented in Table I as “NIST 2.” For
both GaAs and c-Si cells, the open-circuit voltage Voc and effi-
ciency increased to agree more closely with the NREL values.
Unfortunately, the measured fill factor for the GaAs cell was
still low. Subsequent measurements performed at NIST with a
class AAB xenon simulator also gave a low fill factor. Micro-
scopic inspection of the GaAs cell revealed that many of the
100-μm-wide grid lines had been damaged in the process of
contacting. Xenon simulator measurements on different GaAs
cells with intact grid lines gave fill factors that agreed to 1%
with NREL measurements. For the c-Si cell, only about 30%
of the active area was illuminated for the results in Table I be-
cause of the small square aperture placed in the beam of the
simulator. However, by removing the aperture and expanding
the beam to achieve full illumination, the measured Voc for the
c-Si cell agreed to better than 1%. Subsequent measurements
by NIST with the conventional xenon simulator confirmed the
Voc dependence on illumination area observed with the super-
continuum simulator. The temperatures of these cells were not
tightly controlled, which also could have affected Voc . Finally,
while the delivery of simulator light with the multimode fiber
was convenient, it suffered from some bend loss that may have
altered the spectrum of the light incident on the cells.
The measurements presented in the lower part of Table I
for CIGS and a-Si cells are all labeled as “NIST 2” because
the method of treating the cells as reference cells was used to
set the simulator irradiance. The agreement in the efficiencies
measured by NIST and NREL is especially good for the CIGS
cells. The CIGS devices from the NREL do not respond to
spectral content below 490 nm, which makes them less sensitive
to the missing spectral content of the simulator below 450 nm.
The NIST measurements of the a-Si cells are all slightly lower
than the NREL values. At this time, we suspect that this may be
the result of poor electrical contacting, in which hard tungsten
Keithley 2401 SourceMeter; product names are only used in the paper for
clarity and do not represent an endorsement by NIST.

Fig. 4. Supercontinuum simulator spectra created for temporal testing (a)
and the measured efficiencies (b). It should be noted that the vertical scale in
(b) starts at 12 % efficiency to provide more detail for the comparison.
probe tips were used to contact the slippery back surface of the
superstrate device. In addition, the back-contact geometry did
not allow for convenient masking of the beam to match the cell
areas. It should be noted that the NREL measurements of the
a-Si cells were performed with a quartz-lamp simulator and had
an estimated uncertainty of about 10%.
The supercontinuum simulator is a rapidly pulsed light
source, and various cell materials may respond differently de-
pending on their temporal characteristics. Therefore, we tested
the GaAs and c-Si cells at different pulse repetition rates to
check for inconsistencies. We adjusted the total irradiance of
the spectrally shaped 80-MHz spectrum to give the specified
Jsc. However, as shown in Fig. 1, the laser output power and
spectrum vary significantly with repetition rate. To avoid making
unique spectral masks for each repetition rate, the total optical
power from photons with energy above each cell’s bandgap
energy was kept constant at the repetition rates utilized below
80 MHz. The available power limited testing at 1-sun irradiance
to repetition rates of 20, 40, and 80 MHz. These rates correspond
to pulse periods of 50, 25, and 12.5 ns, respectively.
Fig. 4(a) shows the spectra generated for temporal testing of
the c-Si cell plotted out to a wavelength of 1125 nm, which
corresponds to a bandgap energy of 1.1 eV. The AM 1.5 ref-
erence spectrum is also shown, with arbitrary vertical scaling.
The spectral match of the 80-MHz spectrum to AM 1.5 is not
as good as that shown in Fig. 3 and was the result of some per-
manent spectral changes experienced by our supercontinuum
laser. In addition, it is apparent that the spectral content at short
wavelengths further decreases at lower repetition rates, requir-
ing more power above 650 nm to compensate. Not shown is a
similar set of spectra generated for the GaAs cell, which was
analyzed out to 872 nm (1.42 eV) for equivalent total power.
A summary of the measured efficiencies is shown in Fig. 4(b),
where the vertical scale starts at 12% to allow the comparison to
be made in more detail. The estimated repeatability for the NIST
measurements is on the order of 1% efficiency. The NREL mea-
surements were performed with lamp-based simulators that pro-
vided continuous-wave illumination. The correspondence with
the NREL efficiencies is quite good considering the technical
challenges involved in making these measurements. The agree-
ment at all repetition rates indicates that the effect of the pulsed
nature of the simulator would appear to be negligible over a
range of pulse periods from 12.5 to 50 ns for these two materi-
als. Minority carrier lifetimes for c-Si cell material are typically
a few tens of microseconds, while lifetimes for GaAs cell ma-
terial are much shorter, at around a few nanoseconds. While
lifetimes in fabricated junctions can be different from the raw
material, it is interesting to note that a typical c-Si lifetime
is substantially longer than the pulse periods we considered,
and the GaAs lifetime is shorter. Regardless, simulator photons
are still able to effectively generate photocarriers in these two
The discrepancies between the NIST and NREL measure-
ments presented in Table I and Fig. 4 are significant and not
random. The NIST values were consistently smaller than the
NREL values, excluding the CIGS cells. The discrepancies have
largely been accounted for by the handling, contacting, and il-
lumination of the cells while at NIST. To further investigate
what is anticipated to be a potentially small impact from the
pulsed nature of the simulator will require the development of
rigorous, quantitative measurement procedures, as well as re-
finements to the simulator itself. The comparison of types of
simulators might best be accomplished by use of a single ef-
ficiency measurement setup in which only the light source is
exchanged quickly and easily. At this time, the results indicate
that for the four material systems studied, the supercontinuum
simulator looks largely like the sun.
The tight focusing of light sources for the microscopic exci-
tation and study of solar cells has traditionally been done with
lasers having single-mode beam quality. However, this excita-
tion is not very sun-like because most lasers are spectrally very
narrow. By contrast, the supercontinuum solar simulator offers
both single-mode beam quality and a broad spectrum, which
provides for more realistic characterization of solar cells.
Achieving a diffraction-limited focus puts stringent require-
ments on the quality of the optical beam impinging on the focus-
ing element. Plane-wave illumination with a smooth Gaussian-
like beam profile is preferred. For most solar simulators, this
requirement is particularly challenging because of the broad
spectral content and wide solid angle of the emission. While
broadband light can often be efficiently coupled into and out
of step-index multimode optical fiber, the resulting propagation
and illumination are by nature spatially structured. However,

Fig. 5. (a) Projected light distribution emitted from the simulator output fiber.
(b) Knife-edge measurement of the projected light. (c) Derivative of the mea-
surement in (b) is compared with a Gaussian beam profile. (d) Knife-edge
measurement of the focused spot.
photonic crystal fiber, as used to generate supercontinuum light,
supports a broad bandwidth with flat dispersion and single-mode
propagation. For the purposes of beam conditioning, we coupled
the light exiting our spectral shaper into a 3-m-long photonic
crystal fiber. While the coupling efficiency was greater than
100 times more lossy than coupling into a 200-μm multimode
fiber, there was still more than enough light for applications with
focused illumination.
Fig. 5(a) shows the projected spatial pattern of the light di-
verging from the end face of the photonic crystal fiber. The large
central lobe represents broadband propagation of light within the
8-μm glass core of the fiber. Fig. 5(b) presents a knife-edge mea-
surement [11] of the beam profile of the light a few millimeters
from the end face. The red dots show the measured optical power
that passed by the knife edge as it was slowly scanned across the
beam. The optical power was measured with a thermal sensor
to provide a flat response over the broad wavelength range of
the simulator. The overlaid black curve of Fig. 5(b) is a least-
squares fit to the measurement, assuming an idealized Gaussian
beam profile, and shows excellent agreement. The red curve
of Fig. 5(c) presents the derivative of the knife-edge measure-
ment and has good average agreement with the black Gaussian
profile. The intensity noise of the knife-edge measurement was
dramatically enhanced by the point-to-point derivative operation
and illustrates why it is better to curve-fit to the as–measured
data. Surrounding the central lobe of Fig. 5(a) are six smaller
lobes that represent propagation in the hexagonal array of air
holes encircling the glass core. Considering that an otherwise
saturated image was required to view them, the total power in
the surrounding lobes is actually very small. The broadband
single-mode propagation characteristics of the photonic crystal
Fig. 6. Focusing of the solar simulator by use of parabolic mirrors with a
motorized translation stage for raster-scanning image formation.
fiber are critical to achieving a high-quality Gaussian-like beam
capable of being focused to a very small spot.
As shown in Fig. 6, the diverging light from the photonic
crystal output fiber was collimated and focused by aluminum
parabolic mirrors, having focal lengths of approximately 50
and 20 mm, respectively. We used the knife-edge technique to
estimate the diameter of the focused spot to be about 8 μm,
which, for a Gaussian beam, contains 86% of the beam power.
The knife-edge measurement of the spot is presented in Fig. 5(d)
and illustrates that the slope of the transmitted power through
the central lobe (zero position) compares well to the prediction
for an 8-μm Gaussian beam. A small deviation is apparent at
the upper knee that may be caused by scattering of stray light.
With refinements to the focusing optics, we anticipate that the
spot size can be reduced to below 2 μm.
The short-circuit current induced by the focused simulator
was spatially mapped across sample solar cells by use of a
raster scanning system that translated the sample, as depicted
in Fig. 6. In these FS-OBIC measurements, the irradiance of
the focused spot was approximately equivalent to 160 suns.
Fig. 7 shows the measured current map of an n–GaInP/p–GaAs
heterojunction concentrator cell provided by the NREL. In this
500 μm × 500 μm image made with 10-μm translation steps,
the depressed dark regions were caused by metallic grid lines
on the cell, which shadowed the active material. The production
of current from the active regions of the cell is indicated by
the light-colored mesa structures and is about 1 μA. The highly
uniform current map is consistent with the high efficiency of the
device (measured to be 15.2% by the NREL) and the crystalline
Fig. 8 presents the results of an FS-OBIC measurement on a
CIGS thin-film solar cell, also from the NREL. The long trench
feature was created by a grid line, and the induced current in
the active regions was a little over 1 μA. The central crater was
caused by a small scratch in the film intentionally created with
a pin point and indicates the localized impact on the production
of photocurrent. The active area of the cell shows a distinct

Fig. 7. Current map of a GaAs solar cell with grid lines.
Fig. 8. Current map of a CIGS cell featuring a grid line, damage spot, and
surface variations.
Fig. 9. (a) Top-view map of the CIGS cell image (see Fig. 8) with (b) an
optical-microscopy image of the same region.
spatial variation or roughness. Typical of this CIGS material,
grain structures of just a few micrometers in size are expected
to be arranged in clusters of 10 μm or more.
Fig. 9(a) is a top view of Fig. 8, to enable side-by-side com-
parison with the optical microscopy image of the CIGS cell
shown in Fig. 9(b). It is clear from the optical microscopy that
the pin-point scratch caused complete removal of the thin film
from the glass substrate. By contrast, the smaller ribbon-like
feature in the upper left corner (labeled with “A”) may consti-
tute partial film damage, causing a slight reduction (darkening)
in the current map. The small, dark, speckle features in Fig. 9(b)
would appear to be film debris from creating the scratch. Some
of their locations correlate with reductions in current. Two ad-
ditional features of interest in Fig. 9(b) are a brown spot found
to the left of the ribbon-like feature and another brown spot
partially shown at the bottom center of the image (both labeled
with “B”). In the upper left instance, the feature corresponds to
a reduction in current (dark spot), while the lower one appears
to generate increased current (white spot). A topographic image
of this area of the cell indicated that these brown spots reside in
the volume of the film, whereas the small speckle features rest
on top. A better understanding of this sample may be obtained
from measurements with higher spatial resolution.
We anticipate that a much smaller focused spot can be
achieved through better utilization of our optical beam as well
as better-quality optics. An approximate expression for the spot-
size diameter of a focused Gaussian beam at wavelength λ by
an objective with f-number f# is given by 2λf#. The f-number
of our focusing parabolic mirror was 0.5, which indicates that
by use of the full diameter of the optic, we could achieve a spot
equal to the wavelength of the light. This simple expression also
indicates that the spot size has a linear wavelength dependence,
which is of importance when considering a broadband light
source. With our simulator, some of this dependence is offset
by the spatial distribution of the simulator light [see Fig. 5(a)],
in which the beam has more red content at the periphery. While
further study is required, we anticipate that we can achieve a
smaller spot that would enable the illumination of individual
grains in thin films and nanostructures in engineered materials
at a scale below 2 μm.
For the characterization of multijunctions with traditional
light sources, the required optical excitation can become rather
cumbersome, with multiple sources coincident from different
angles with limited spectral selectivity. As the number of junc-
tions to be tested in a device increases, so must the complexity
of the optical excitation. To illustrate the ability of the super-
continuum simulator to create customized illumination for light
biasing of multijunctions, we applied additional masks to slice
the simulator spectrum into subbands. Fig. 10 presents mea-
surements of four different spectra created for the excitation of
individual layers in a four-junction solar cell.
To develop the multijunction measurement capabilities of the
simulator, we characterized the partial currents generated by a
single-junction cell from spectrally sliced illumination. Fig. 11
shows two sliced spectra created by the simulator, which we
have colored and labeled as the blue and red spectra. The spectra
were sliced at a wavelength of 720 nm so as to have nearly equal
total power within the wavelength range shown. The external
quantum efficiency (EQE) of a representative, single-junction,
GaAs solar cell from the NREL, that is very similar to the device

Fig. 10. Measured spectra are shown for the selective excitation of four mul-
tijunction cell layers.
Fig. 11. Sliced spectra for inducing partial currents are shown with the EQE
of a representative GaAs single-junction cell.
used throughout this work, is also shown in this figure [10].
While not the actual EQE of our device, the curve is a sufficient
representation to estimate the measured partial currents when
used in conjunction with the measured spectra.
Fig. 12(a) shows a full-spectrum OBIC measurement of the
GaAs cell with a focused spot irradiance that was approximately
equivalent to 50 suns. Fig. 12(b) and (c) shows the OBIC mea-
surements for spectrally sliced blue and red illumination, respec-
tively. The average currents measured in the middle of the active
regions were 0.115 μA for the blue illumination and 0.055 μA
for the red illumination. The sum of these currents agrees well
with the 0.174-μA current measured for full-spectrum illumi-
nation in Fig. 12(a).
By using the curves of Fig. 11, we estimated that 73% of the
total current should be produced from blue-light illumination,
whereas the remaining 27% should be produced from red-light
illumination. Because the EQE for this GaAs device rolls off
substantially above 850 nm, more current is expected from blue
illumination, despite the nearly equal optical powers delivered
to the device. Comparing the currents of Fig. 12, we measured
68% of the current from blue illumination and 32% from red
illumination. The agreement is quite good, keeping in mind that
the actual EQE curve for the device was not available.
To demonstrate the measurement of individual junction char-
acteristics in a tandem solar cell, biased spectra were created
Fig. 12. Current maps for (a) full-spectrum illumination, (b) blue-light illu-
mination, and (c) red-light illumination of a GaAs solar cell.
Fig. 13. Blue-rich and red-rich spectra used for the light-biasing of a series
tandem cell are compared with a neutral spectrum. The bias light was split at a
wavelength of 670 nm.
to implement the current-limiting technique described by Kurtz
et al. [12]. The black curve of Fig. 13 shows the simulator spec-
trum for balanced neutral illumination of both junctions of a
GaInP/GaAs tandem solar cell from the NREL. Plotted behind
the black curve are blue-rich and red-rich spectra used to create
bottom- (long wavelength) and top- (short wavelength) limited
cell currents. In the respective unbiased wavelength regions for
each curve, the spectra are closely matched and obscured by
the neutral spectrum. As indicated by the gray vertical line, the
biasing regions meet at a wavelength of 670 nm to correspond
with the complementary EQE dependence of the two junctions.
The amount of blue-rich and red-rich light bias could be var-
ied continuously between the balanced neutral level and the

Fig. 14. Short-circuit currents for a GaInP/GaAs tandem cells are measured
as a function of blue-rich and red-rich light bias. Current-limiting behavior is
observed for the top junction.
maximum cases shown. The red-rich content could be more
than doubled in optical power, whereas the blue-rich content
could be increased by at most 30%.
Fig. 14 shows the measured short-circuit currents for the bi-
ased illumination of the GaInP/GaAs tandem cell across its full
area of about 0.1 cm2 . Because of technical limitations at the
time, the irradiance was limited to about 0.1 mW/cm2 , generat-
ing currents in the microamp range. The measured current for
balanced illumination of both junctions resulting from the black
spectral curve of Fig. 13 was 3.7 μA. In Fig. 14, this unbiased
illumination scenario corresponds to the current shown for a
light bias defined as 0%. For visual reference, this current level
for neutral illumination has been extended across the plot with
a horizontal gray line. As the red-light bias was increased up to
130%, the short-circuit current remained near the neutral level.
This indicates that the tandem cell is top-junction limited, be-
cause substantial increases to the red-rich content result in no
significant increases in cell current. Conversely, a 30% increase
in the blue-rich content resulted in a 20% increase in cell cur-
rent. This is consistent with the top junction producing more
current, as allowed by the larger current-producing capacity of
the bottom cell. With a limited amount of light bias available
at this time, we were unable to extend the “blue-rich” curve
far enough to measure the current limit for the bottom junction.
Results provided by the NREL indicate that the bottom-junction
current limit should be about 50% higher than the 3.7 μA mea-
sured for neutral illumination.
Our preliminary characterization of the current-limiting be-
havior of a tandem cell is promising. However, we anticipate
that our results could be greatly improved through a number
of technical refinements. For example, a more efficient spectral
shaping and light collection process would have resulted in a
1-sun illumination condition and short-circuit currents in the
milliamp range. Better spectral shaping efficiency would also
increase the light-bias adjustment range, allowing the current
limits for both junctions to be observed. It may be possible to
supplement the missing spectral content below 450 nm with
additional blue-light sources. Spatial studies of multijunctions
would be possible by combining the focusing ability of our sim-
ulator with the generation of light-biasing spectra and would
be of particular interest to uniformity studies of multijunction
concentrator cells.
The results of this demonstration of a supercontinuum solar
simulator are very promising and justify further development
of this technology. An effort is underway to replace the static
amplitude masks used in this study with a programmable spa-
tial light modulator to dramatically improve functionality and
performance. With improvements to the spectral shaping accu-
racy, the uncertainties associated with the comparisons made to
the NREL cells could be dramatically reduced to provide more
conclusive results. In the future, improvements in this technol-
ogy may allow cell calibration measurements to be performed
without applying spectral mismatch corrections required for tra-
ditional simulators [9]. Furthermore, the ability to rapidly and
accurately tune the simulator spectrum would enable more re-
alistic and complicated illumination of multijunctions that are
not possible with traditional simulators. For example, cell effi-
ciency could be studied in the laboratory as a function of diurnal
A quantitative intercomparison of cell efficiencies is planned
for the near future to provide rigorous validation of the super-
continuum simulator beyond this preliminary demonstration.
In addition to simulator development, such work will require
refinements to our handling, contacting, and illumination of ref-
erence solar cells.
We have shown that our novel solar simulator has the abil-
ity to be spectrally shaped with unprecedented accuracy and
can generate cell efficiency performance from a variety of pho-
tovoltaic devices as if they had been illuminated by the sun.
Focusing the full-spectrum simulator to a spot 8 μm in diameter
allowed us to map and study current variations in FS–OBIC
spatial images. The measurement conditions for FS–OBIC are
more realistic than those performed with a narrowband laser and
should be particularly advantageous for the characterization of
multijunctions. We also demonstrated the spectrally selective
generation of partial currents in a single-junction solar cell that
was consistent with the device quantum efficiency. Finally, the
simulator is capable of producing blue-rich and red-rich spectra
to illustrate the current-limiting behavior of a tandem solar cell.
Without added system complexity, the light biasing of three or
more junctions could easily be accomplished within the single,
collimated, or focused beam of our simulator.
The authors gratefully acknowledge A. Sanders of NIST for
optical and topographic microscopy; D. Friedman, L. Mansfield,
Q. Wang, and B. Nemeth of the NREL for providing sample cells
and technical guidance; and O. Jonsson and PV Measurements,
Inc. for the use of the xenon solar simulator.
[1] T. Moriarty, J. Jablonski, and K. Emery, “Algorithm for building a simu-
lator spectrum for NREL one-sun multi-source simulator,” in Proc. 38th
Photovoltaic Spec. Conf., Austin, TX, USA, 2012, pp. 1291–1295.
[2] K. Emery, D. Myers, and S. Rummel, “Solar simulation—Problems and
solutions,” in Proc. 20th Photovoltaic Spec. Conf., Las Vegas, NV, USA,
1988, pp. 1087–1091.
[3] Y. Tsuno, K. Kamisako, and K. Kurokawa, “New generation of PV module
rating by LED solar simulator—A novel approach and its capabilities,” in
Proc. 33rd Photovoltaic Spec. Conf., San Diego, CA, USA, 2008, pp. 1–5.
[4] B. H. Hamadani, J. Roller, B. Dougherty, and H. Yoon, “Fast and re-
liable spectral response measurements of PV cells using light emitting
diodes,” in Proc. 39th Photovoltaic Spec. Conf., Tampa, FL, USA, 2013,
pp. 0073–0075.
[5] J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in
photonic crystal fiber,” Rev. Mod. Phys., vol. 78, no. 4, pp. 1135–1184,
[6] T. Binhammer, E. Rittweger, R. Ell, F. X. K¨artner, and U. Morgner,
“Prism-based pulse shaper for octave spanning spectra,” Opt. Commun.,
vol. 41, no. 12, pp. 1552–1557, Dec. 2005.
[7] J. P. Rice, S. W. Brown, J. E. Neira, and R. R. Bousquet, “A hyperspec-
tral image projector for hyperspectral imagers,” Proc. SPIE, vol. 6565,
p. 65650C, 2007.
[8] Standard Tables for Reference Solar Spectral Irradiances: Direct Nor-
mal and Hemispherical on 37° Tilted Surfaces, G173003, 2008 [Online].
[9] H. Field and K. Emery, “An uncertainty analysis of the spectral correction
factor,” in Proc. 23rd Photovoltaic Spec. Conf., Louisville, KY, USA,
1993, pp. 1180–1187.
[10] S. R. Kurtz, J. M. Olson, and A. Kibbler, “High efficiency GaAs solar cells
using GaInP2 window layers,” in Proc. 21st Photovoltaic Spec. Conf.,
Kissimmee, FL, USA, 1990, pp. 138–140.
[11] J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Clavi`ere, E. A.
Franke, and J. M. Franke, “Technique for fast measurement of Gaussian
laser beam parameters,” Appl. Opt., vol. 10, no. 12, pp. 2775–2776, Dec.
[12] S. R. Kurtz, K. Emery, and J. M. Olson, “Methods for analysis of two-
junction, two-terminal photovoltaic devices,” in Proc. World Conf. Pho-
tovoltaic Energy Convers., Waikoloa, HI, USA, 1994, pp. 1733–1737.
Authors’ photographs and biographies not available at the time of publication


Cliquez sur:


pour accéder à tous les Liens




Votre commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:


Vous commentez à l’aide de votre compte Déconnexion /  Changer )

Photo Google

Vous commentez à l’aide de votre compte Google. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s